Original Research Article

Greengram Livelihood Security in Pali District through Front Line Demonstrations

Aishwarya Dudi* and M.L. Meena

1SMS (Home Science), ICAR-CAZRI, Krishi Vigyan Kendra, Pali-Marwar (Rajasthan) 306401, India
2SMS (Agricultural Extension), ICAR-CAZRI, Krishi Vigyan Kendra, Pali-Marwar (Rajasthan) 306401, India

*Corresponding author

A B S T R A C T

Pulses are important food crops for human consumption and animal feed. The total production of pulses in the world was 14.76 billion tones from the area of 14.25 billion hectares in the year 2014-15 while in India total pulses production was 18.58 million tons from the area of 23.63 million hectares in the year 2016-17 (DES 2017). The study in total 65 frontline demonstrations were conducted on farmers’ fields in villages viz., Sari ki Dhani, Bedkallan, Rampura, Kushalpura and Balara of Pali district during 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17 to demonstrate production potential and economic benefit of improved technologies comprising sowing method, nutrient management and chemical weed control and adoption of whole package of practices for the crop. After sowing application (within two days of sowing) of weedicide Pendimethalin at 1.0 kg/ha in 500 liters of water used for effective control of the weeds during kharif season in rainfed condition. The findings of the study revealed that improved technology recorded a mean yield of 1056 kg/ha which was 24.5% higher than obtained with farmers’ practice (850 kg/ha). The extension gap, technology gap and technology index were 226 kg/ha, 393.8 kg/ha and 27.1 %, respectively. An additional investments of Rs.1720 per ha coupled with scientific monitoring of demonstrations and non-monetary factors resulted in additional return of Rs. 10459 per ha. Higher mean net income of Rs. 49342/ha with a Benefit: Cost ratio of 3.7 was obtained with improved technologies in comparison to farmers’ practices (Rs. 38883/ha). The frontline demonstrations conducted on greengram at the farmers’ field revealed that the adoption of improved technologies significantly increased the yield as well as yield attributing traits of crop and also the net returns to the farmers.

Key words: Adoption, Frontline demonstration, Greengram, Livelihood and gap analysis

Accepted: 20 March 2018
Available Online: 10 April 2018

Introduction

Pulses are important food crops for human consumption and animal feed. Being leguminous in nature, they are considered to be important components of cropping systems because of their viability to fix atmospheric nitrogen, add substantial amounts of organic matter to the soil and produce reasonable yields with low inputs under harsh climatic and soil conditions. Moong- wheat cropping system is predominant and is continuously
practiced by the farmers in the arid zone of Rajasthan. There is evidence of system productivity stagnation, nutrient water imbalances and increased insect-pest and diseases incidence due to prolonged use of this cereal dominated system source. Greengram (*Vigna radiata* L. Wilczek.) is the third important pulse crop in India. It can be grown both as kharif greengram and summer green gram. With the advent of short duration, MYMV (Mungbean yellow mosaic virus) tolerant and synchronous maturing varieties of greengram (55-60 days), there is a big opportunity for successful cultivation of greengram in green gram-wheat rotation without affecting this popular cropping pattern.

Greengram belonging to family **Legueminoseae**, is a tropical and sub-tropical grain legume, adapted to different types of soil conditions and environments (*kharif*, spring, summer). It ranks third in India after chickpea and pigeonpea. It has strong root system and capacity to fix the atmospheric nitrogen into the soil and improves soil health and contributes significantly to enhancing the yield of subsequent crops (Jat *et al.*, 2012). However the production and productivity is very low in greengram mainly due to its cultivation in resource poor lands with minimum inputs, non-synchronous maturity and indeterminate growth habit. Greengram yield is also affected by insect-pests and diseases, especially by greengram yellow mosaic virus (MYMV) and *Cercospora* leaf spot (CLS). There is a strong need to develop the lines/varieties which give outstanding and consistent performance in *kharif* season over diverse environment. Development of varieties with high yield and stable performance is a prime target of all greengram improvement programmes. The total production of pulses in the world was 14.76 billion tones from the area of 14.25 billion hectares in the year 2014-15 while in India total pulses production was 19.78 million tons from the area of 23.63 million hectares in the year 2014-15. Whereas in Rajasthan, the total pulses production was 1.55 million tons from the area of 3.78 million hectares. The greengram production among pulses was 3.73 lacs tons from the area of 8.85 hectares in Rajasthan in the year 2013-14. The major cultivation of greengram is based upon rainfed conditions (Govt. of Rajasthan, 2016-17). Pali district stands first rank in term of area and production of greengram in the state. In this district, the greengram crop is grown in an area of 2.46 lacs ha with an annual production of over 1.30 tones (Govt. of Rajasthan, 2016-17).

The Front Line Demonstration is an important method of transferring the latest package of practices in totality to farmers. By which, farmers learn latest technologies of oilseeds and pulses production under real farming situation at his own field, which may lead to higher adoption. Further, these demonstrations are designed carefully where provisions are made for speedy dissemination of demonstrated technology among farming community through organization of other supportive extension activities, such as field days and farmers convention. The main objective of the Front Line Demonstration is to demonstrate newly released crop production and protection technologies and management practices at the farmers’ field under different agro-climatic regions and farming situations. While demonstrating the technologies at the farmer’s field, the scientists are required to study, the factors contributing to higher crop production, field constraints of production and thereby generating production factor and feedback information. Front Line Demonstrations are conducted in a block of two to four hectares of land in order to have better impact of the demonstrated technology on the farmers and field level extension functionaries with full package of practices. Keeping in view the
present study was done to analyze the performance and to promote the FLD on greengram production.

Materials and Methods

In total 65 frontline demonstrations were conducted on farmers’ field in villages Sari ki Dhani, Bedkallan, Rampura, Kushalpura and Balara of Pali district during 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17. Each demonstration was conducted on an area of 0.4 ha, and 1.0 ha area adjacent to the demonstration plot was kept as farmers’ practices. The package of improved technologies like line sowing, nutrient management, seed treatment and whole package were used in the demonstrations. The variety of greengram SML 668 was included in demonstrations methods used for the present study with respect to FLDs and farmers’ practices are given in Table 1.

In case of local check plots, existing practices being used by farmers were followed. In general, soils of the area under study were sandy loam and medium to low in fertility status. The spacing was 30 cm between rows and 10 cm between plants in the rows. The thinning and weeding was done invariably 30-35 days after sowing to ensure recommended plant spacing within a row because excess population adversely affects growth and yield of crop. Seed sowing was done in the first week of July with a seed rate of 15-20 kg/ha. Other management practices were applied as per the package of practices for *kharif* crops by Department of Agriculture, Agro-climatic Zone IIb Jalore (DOA, 2017). Data with respect to grain yield from FLD plots and from fields cultivated following local practices adopted by the farmers of the area were collected and evaluated. Potential yield was taken in to consideration on the basis of standard plant population (404440 plants/ha) and average yield per plant 22.5 gm/plant under recommended package of practices with 30 X 10 cm crop geometry (Chandra 2010). Different parameters as suggested by Yadav *et al.*, (2004) was used for gap analysis, and calculating the economic. The details of different parameters and formula adopted for analysis are as under:

Extension gap = Demonstration yield – Farmers’ practice yield

Technology gap = Potential yield – Demonstration yield

Technology index = \[
\frac{Potential \ Yield - Demonstration \ Yield}{Potential \ Yield} \times 100
\]

Additional cost = demonstration Cost – Farmers’ practice cost

Effective gain = Additional Returns – Additional cost

Additional returns = Demonstration returns – Farmers’ practice returns

Incremental B: C ratio = \[
\frac{Additional \ Returns}{Additional \ Cost}
\]

Results and Discussion

Yield attributing traits

The number of productive pods per plant under improved technology were 78.8, 89.4, 70.4, 82.6 and 74.2 as against local check (farmers’ practices), 45.7, 53.5, 51.9, 33.3 and 48.9 during the year 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17, respectively (Table 2). There was an increase of 69.4, 67.1, 35.6, 48.3 and 51.7 % in number of productive pods under demonstration of improved technology over farmers’ practice.
Table 1: Particulars showing the details of greengram grown under FLD and farmers’ practice

<table>
<thead>
<tr>
<th>Operation</th>
<th>Existing practice</th>
<th>Improved practices demonstrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line sowing</td>
<td>Broad casting of seed</td>
<td>Spacing 40 cm between rows and 10 cm between plants in the rows</td>
</tr>
<tr>
<td>Seed treatment</td>
<td>No seed treatment</td>
<td>Seed treatment with Bavistin 2gm/kg seed</td>
</tr>
<tr>
<td>Weed management</td>
<td>No weed management</td>
<td>Weeds control by using herbicide Pendimethaline 1kg/ha in 500 liter of water as pre-emergence treatment for effective control of weeds within two days after sowing.</td>
</tr>
<tr>
<td>Nutrient management</td>
<td>Only FYM and no fertilizer application</td>
<td>10 tons/ha farm yard manure and 20kg/ha nitrogen</td>
</tr>
<tr>
<td>Whole package</td>
<td>Farmers are cultivating the greengram crop without adoption of any improved technology</td>
<td>All the crop (production and protection) management practices as per the package of practices for kharif crop by SKRAU, Bikaner, were followed for raising the crop</td>
</tr>
</tbody>
</table>

Table 2: Yield attributing traits of greengram

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of pods/plant</th>
<th>Number of seeds/pods</th>
<th>Seed weight (in 100 pods gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IT</td>
<td>FP</td>
<td>% increased</td>
</tr>
<tr>
<td>2012-13</td>
<td>78.8</td>
<td>45.7</td>
<td>69.4</td>
</tr>
<tr>
<td>2013-14</td>
<td>89.4</td>
<td>53.5</td>
<td>67.1</td>
</tr>
<tr>
<td>2014-15</td>
<td>70.3</td>
<td>51.9</td>
<td>35.6</td>
</tr>
<tr>
<td>2015-16</td>
<td>82.6</td>
<td>33.3</td>
<td>48.3</td>
</tr>
<tr>
<td>2016-17</td>
<td>74.2</td>
<td>48.9</td>
<td>51.7</td>
</tr>
<tr>
<td>Average</td>
<td>79.1</td>
<td>46.7</td>
<td>54.4</td>
</tr>
</tbody>
</table>

IT = Improved Technology; FP = Farmers Practice

Table 3: Seed yield of greengram as affected by improved and farmer practices in farmers’ fields

<table>
<thead>
<tr>
<th>Year</th>
<th>Area (ha)</th>
<th>Demonstration (No.)</th>
<th>Yield kg/ha</th>
<th>Additional yield (kg/ha) over farmer practice</th>
<th>% increased in yield over farmers’ practice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IT</td>
<td>FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-13</td>
<td>05.5</td>
<td>10</td>
<td>1080</td>
<td>790</td>
<td>290</td>
</tr>
<tr>
<td>2013-14</td>
<td>08.0</td>
<td>15</td>
<td>1130</td>
<td>890</td>
<td>240</td>
</tr>
<tr>
<td>2014-15</td>
<td>10.5</td>
<td>10</td>
<td>1003</td>
<td>860</td>
<td>143</td>
</tr>
<tr>
<td>2015-16</td>
<td>10.5</td>
<td>15</td>
<td>1045</td>
<td>830</td>
<td>215</td>
</tr>
<tr>
<td>2016-17</td>
<td>10.5</td>
<td>15</td>
<td>1023</td>
<td>880</td>
<td>143</td>
</tr>
<tr>
<td>Average</td>
<td>9.0</td>
<td>13.0</td>
<td>1056.2</td>
<td>850</td>
<td>206.2</td>
</tr>
</tbody>
</table>
The average number of productive pods per plant in improved technology was 79.1 and 46.7 under farmers’ practice, thus there were 54.4% more pods per plant under improved technology demonstrations. The findings confirm with the findings of Yadav et al., (2007) and Meena et al., (2011) and Rajni et al., (2013).

Seed yield (kg/ha)

The productivity of greengram under improved production technology ranged between 1003-1130 kg/ha with mean yields of 1056.2 kg/ha (Table 3). The productivity under improved technology was 1080, 1130, 1003, 1045 and 1023 kg ha$^{-1}$ during 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17, respectively as against a yield range between 790 to 890 kg ha$^{-1}$ under farmers’ practice.

In comparison to farmer’s practice, there was an increase of 36.7, 26.9, 16.7, 25.9 and 16.3% in productivity of greengram under improved technologies in 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17, respectively.
management. The findings are confirm with the findings of Singh and Meena (2011), Poonia and Pithia (2011) and Meena et al., (2012).

Gap analysis

Evaluation of findings of the study (Table 4) stated that an extension gap of 143 to 290 kg ha\(^{-1}\) was found between demonstrated technology and farmers’ practice and on average basis the extension gap was 226 kg ha\(^{-1}\). The extension gap was highest (290 kg ha\(^{-1}\)) during 2012-13 and lowest (143 kg ha\(^{-1}\)) during 2013-14. Such gap might be attributed to adoption of improved technology especially high yielding varieties sown with the help of seed cum fertilizers drill with balanced nutrition, weed management and appropriate plant protection measures in demonstrations which resulted in higher grain yield than the traditional farmers’ practices. The study further exhibited a wide technology gap during different years. It was lowest (320 kg ha\(^{-1}\)) during 2012-13 and highest (447 kg ha\(^{-1}\)) during 2013-14. The average technology gap of all the years was 393.8 kg ha\(^{-1}\). The difference in technology gap in different years is due to better performance of recommended varieties with different interventions and more feasibility of recommended technologies during the course of study. Similarly, the technology index for all demonstrations in the study was in accordance with technology gap. Higher technology index reflected the inadequate transfer of proven technology to growers and insufficient extension services for transfer of technology. On the basis of three years study, overall 27.1% technical index was recorded, which was reduced from 25.5, 22.1, 30.8, 27.9 and 29.4 during 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17 respectively. Hence, it can be inferred that the awareness and adoption of improved varieties with recommended scientific package of practices have increased during the advancement of study period. These findings are in the conformity of the results of study carried out by Chandra (2010), Meena and Singh (2013) and Dayanand et al., (2012).

Economics

Different variables like seed, fertilizers, bio-fertilizers and pesticides were considered as cash input for the demonstrations as well as farmers practice and on an average additional investment of Rs. 1720 per ha was made under demonstrations. Economic returns as a function of gain yield and MPS sale price varied during different years. The maximum returns (Rs. 13050) during the year 2012-13 were obtained due to high grain yield and higher MPS sale rates as declared by GOI.

The higher additional returns and effective gain obtained under demonstrations could be due to improved technology, non-monetary factors, timely operations of crop cultivation and scientific monitoring. The lowest and highest incremental benefit cost ratio (IBCR) were 3.1 and 4.5 in 2015-16 and 2012-13, respectively (Table 5) depends on produced grain yield and MPS sale rates.

It may be concluded that the frontline demonstrations conducted on greengram at the farmers’ field revealed that the adoption of improved technologies significantly increased the yield as well as yield attributing traits of the crop and also the net returns to the farmers. So, there is a need to disseminate
the improved technologies among the farmers with effective extension methods like training and demonstrations. The farmers’ should be encouraged to adopt the recommended package of practices realizing for higher returns.

References

How to cite this article:

doi: https://doi.org/10.20546/ijcmas.2018.704.300