Incidence of Bacteria-Yeast-Moulds on Processed Jackfruit Squash from Different Genotypes

M.S. Shwetha* and B. Ranganna

Department of Agricultural Engineering, University of Agricultural Sciences, G.K.V.K, Bangalore-560-065, Karnataka, India

*Corresponding author

ABSTRACT

Jackfruit (Artocarpus heterophyllus L.) genotypes namely (HV-1, Swarna Halasu, Muttom Varikka, Lalbagh Madhura and HRS) was selected and processed into squash and later analyzed for microbial properties for a period of 3 months at different storage conditions (ambient and refrigerated). The study revealed that the squash stored under refrigerated temperature was free from microorganisms throughout the storage period (3 months) irrespective of genotypes studied, whereas, bacteria, yeast and mould were found after 60 days of storage period at ambient temperature indicating that the shelf-life and quality of squash was only about 45-60 days at ambient storage in all the genotypes studied respectively.

Keywords: Jackfruit, Genotype, Squash, Microbial analysis, Shelf-life, Storage

Introduction

Jackfruit is a nutritious fruit, mostly consumed as a fresh table fruit. It has a very short shelf life of just a day or two after ripening and bulbs have one day after separating from the fruit. In India, except the production of jackfruit chips from unripe fruit in some regions no commercial methods of jackfruit processing into different value added products is in practice. Therefore, there is a trust in recent times, to explore the utilization of this fruit especially through product diversification. Reports suggest that jackfruit pulp can be used as a raw material for the preparation of squash, juice, wine, jam, jelly, candy etc. Further, hardly few research studies have been reported on the product development, storage and preservation of jackfruit bulbs.

Jackfruit (Artocarpus heterophyllus L.) bulbs are rich in energy, dietary fiber, minerals and vitamins with high in calories, and is one of the healthy fruits to relish. Squash is a non-alcoholic concentrated juice that is usually fruit flavoured made from fruit juice, water and sugar or sugar substitute. Interestingly, it is not possible to convert fruits of all jackfruit genotypes into a variety of products due to
immense variations of plant types. Hence, an attempt was made to process jackfruit squash from different genotypes viz., HV-1, Swarna Halasu, Muttom Varikka, Lalbagh Madhura and HRS variety with a view to come out with the best genotypes ideally suitable for processing into squash. The present study was carried out to analyze the microbial load on developed jackfruit squash from different genotypes.

Materials and Methods

Processing of jackfruit into squash

Five popular jackfruit genotypes, namely, HV-1, Swarnahalasu, Muttomvarikka, Lalbaghmadhura and Horticulture Research Station (HRS) were selected for developing squashes. Matured jackfruits of the above genotypes were procured from UAS, GKVK campus and from jackfruit growers in Doddaballapur Taluk of Bangalore Rural District, Karnataka.

Methodology for preparation of squash

Squash is the most popular fruit beverage drink in most of the households and contains at least 25 per cent fruit pulp, 40 per cent total soluble solids (° Brix) and 1.0 per cent acidity with 350 ppm potassium meta-bisulphite. It is diluted 3-4 times before serving. The manufacturing process for making jackfruit squash has been standardized.

Well matured and ripe deseeded jackfruit bulbs was washed in hot water and cut into pieces and the same was mashed in a blender/mixer to get pulp (TSS of pulp was recorded). Required quantity of pulp (400-450 g), sugar (1200 g) and citric acid (8-10 g) was added to 1 liter of water to attain 45 per cent pulp, 40°Brix and 1.2 per cent acidity. The homogeneous contents are boiled @ 80-85°C for 15-20 min. The contents are cooled and 350 ppm potassium meta-bisulphite was added as a chemical preservative and filtered through a stainless steel filter. The filtrate concentrate was filled into plain heat glass bottles and cork sealed by cork sealing machine. The cork sealed squash bottles was pasteurized in a water bath at 90-95°C for 15-20 min and allowed to stand overnight in ambient condition. These bottles were stored for 2 months at room temperature and 3-6 months at low temperature. The concentrate squash might be served by diluting with water in the ratio of 1:3.

Microbial analysis

The processed jackfruit squashes from five genotypes developed as per FSSAI standards and were analyzed for microbial counts like bacteria, yeast and moulds. The experimental treatments are follows:

During storage study of jackfruit squash samples, the squash was observed at monthly intervals for bacteria, yeast and moulds growth and the counts were taken. The processed jackfruit squash from different genotypes were subjected to microbial analysis by employing Dilution Plate Count Method (Somasegaran and Hoben, 1985).

For enumeration of bacterial counts, a 10 ml sample of jackfruit squash was weighed aseptically and was diluted in 90 ml sterile water and subsequent dilutions were prepared up to 10⁻³ by transferring 1 ml aliquot from 10⁻¹ to 9ml water blank. The filtrates serially diluted to 10⁻¹, 10⁻² and 10⁻³ were used for the enumerating population of bacteria, yeasts and moulds by plating on suitable medium in duplicate. The culture media used was Nutrient Agar for bacteria and Potato Dextrose for yeasts and moulds respectively. Required dilution of 1ml was transferred to sterilized petri plates and 15-20ml of cultured media was poured to it. The plates were shaken in
anticlockwise direction to attain uniform
distribution of dilution to the culture media.
The plates were then allowed to solidify the
media and incubated for 3-5 days at 26 ± 2°C.
The plates were then observed for bacteria,
yeast and moulds. The results expressed as
total counts or colony forming units (cfu/g of
sample) was determined using the following
formula:

\[\text{Total counts, } \log_{10} \text{ cfu/g} = \frac{\text{No. of colonies} \times \text{Dilution factor}}{\text{weight of sample (ml)}} \]

Statistical analysis

For the statistical analysis, Factorial
Completely Randomized Design (FCRD) was
adopted. Observations on various parameters
were recorded with three replications. The
data were analyzed and main and interaction
effects were studied (Sundararaj *et al.*, 1972).

Results and Discussion

The microbial loads of jackfruit squashes
stored under ambient and refrigerated
temperatures are presented in Table 1 and 2.
Squash developed with 5 different selected
jackfruit genotypes stored both under
refrigerated and ambient storages was
subjected to microbial evaluation at every 1
month interval throughout the storage period
to assess the micro-organisms viz., bacteria,
yeasts and moulds.

These results are in line with Syed *et al.*, (2012)
and finally reported that the bacterial
count was increasing with the increase of
storage period. Shahanwaz *et al.*, (2009)
observed that juice beverages stored in glass
bottles and stored at refrigerated condition can
retain good quality nutritive values and
leading to more extensive shelf-life of the
products.

Fig.1 Flow chart for preparation of jackfruit squash

Ripe deseeded jackfruit bulbs

Cutting into small pieces

Mashing in blender

Jackfruit pulp

Blended pulp (25-30%)

(Water, sugar, citric acid @ 1.0%, KMS 450 ppm)

Squash (40-45°B)

Pasteurization @ 90-95°C, 15 min

Bottling

Retorting @ 80-90°C, 20 min

Cooling and Storage

Squash
Microbial analysis

<table>
<thead>
<tr>
<th>Jackfruit Genotypes (G)</th>
<th>HV-1 (G1), Swarnahalasu (G2), Muttermvari (G3), Lalbaghmadhura (G4) and Horticulture Research Station (HRS) (G5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging material</td>
<td>Glass bottles</td>
</tr>
<tr>
<td>Preservatives</td>
<td>Potassium meta-bisulphate (KMS-350 ppm)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Ambient temperature (28-30°C) Refrigeration temperature (2-3°C)</td>
</tr>
<tr>
<td>Storage period (D)</td>
<td>90 days (3 months)</td>
</tr>
</tbody>
</table>

Table.1 Influence of genotypes on microbial counts of jackfruit squashes during storage

<table>
<thead>
<tr>
<th>Genotype (G)</th>
<th>Bacteria (cfu/g)</th>
<th>Ambient temperature (D) Mean</th>
<th>Refrigerated temperature (D) Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 30 60 90</td>
<td>0 30 60 90</td>
</tr>
<tr>
<td>G-1</td>
<td>0.707</td>
<td>2.335 7.097 11.20</td>
<td>5.335 0.707 0.707 0.965</td>
</tr>
<tr>
<td>G-2</td>
<td>0.707</td>
<td>2.792 5.522</td>
<td>2.432 0.707 0.707 0.965</td>
</tr>
<tr>
<td>G-3</td>
<td>0.707</td>
<td>3.155 6.314</td>
<td>2.761 0.707 0.707 1.224</td>
</tr>
<tr>
<td>G-4</td>
<td>0.707</td>
<td>2.815 7.071</td>
<td>2.825 0.707 0.707 0.965</td>
</tr>
<tr>
<td>G-5</td>
<td>0.707</td>
<td>3.711 7.442</td>
<td>3.142 0.707 0.707 0.965</td>
</tr>
<tr>
<td>Mean</td>
<td>0.707</td>
<td>1.032 3.946 7.510</td>
<td>- 0.707 0.707 0.707 1.017</td>
</tr>
</tbody>
</table>

Table.2 Influence of genotypes on ‘microbial counts’ of jackfruit squashes during storage

<table>
<thead>
<tr>
<th>Genotype (G)</th>
<th>Yeast/moulds (cfu/g)</th>
<th>Ambient temperature (D) Mean</th>
<th>Refrigerated temperature (D) Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 30 60 90</td>
<td>0 30 60 90</td>
</tr>
<tr>
<td>G-1</td>
<td>0.707</td>
<td>1.870 5.025 8.645</td>
<td>4.062 0.707 0.707 0.965</td>
</tr>
<tr>
<td>G-2</td>
<td>0.707</td>
<td>2.792 3.315 6.314</td>
<td>2.989 1.973 1.594 1.224</td>
</tr>
<tr>
<td>G-3</td>
<td>0.707</td>
<td>2.815 3.711 7.442</td>
<td>2.336 2.895 4.635 3.142</td>
</tr>
<tr>
<td>G-4</td>
<td>0.707</td>
<td>2.336 6.314</td>
<td>2.856 1.973 1.594 1.224</td>
</tr>
<tr>
<td>G-5</td>
<td>0.707</td>
<td>2.989 7.442</td>
<td>2.679 2.895 4.635 3.142</td>
</tr>
<tr>
<td>Mean</td>
<td>0.707</td>
<td>1.332 3.248 6.027</td>
<td>- 0.707 0.707 0.707 0.862</td>
</tr>
</tbody>
</table>
Microbial analysis indicated that in all the five genotypes of jackfruit squash, bacteria, yeast and moulds were noticed after 1 month of storage period, but the squash was found acceptable as the microbial counts were within the recommended level. Also, as storage period increased the micro-organism load was found increasing i.e., after 2 months at ambient storage. However, squashes from 5 different genotypes stored in refrigerated storage were found to be free from microbial load besides, retaining all their quality attributes respectively.

References

How to cite this article: