Effect of Biofertilizers and Micronutrients on Nutrient Uptake, Growth, Yield and Yield Attributes of Lentil (Lens culinaris L.)
Amit Kumar Tiwari*, Ved Prakash, Atik Ahmad and R.P. Singh

Department of Soil Science and Agriculture Chemistry, Narendra Deva University of Agriculture and Technology, Narendra Nagar, Faizabad, U.P., India
*Corresponding author

A B S T R A C T

A field experiment was conducted to study the effect of biofertilizers (Rhizobium and PSB) and micronutrients (Zn and Mo) on nutrient uptake, growth, yield and yield attributing characters of lentil. The experiment was laid out in randomized block design with the eight treatments viz. T₁ (control), T₂ (Seed inoculation with Rhizobium + PSB), T₃ (Seed inoculation with Rhizobium + PSB+ 1g Ammonium Molybdate/ kg seed), T₄ (RDF, 20:60:20 kg N, P₂O₅ and K₂O), T₅ (RDF + Seed Inoculation with Rhizobium + PSB), T₆ (RDF+ Seed Inoculation with Rhizobium + PSB+1 g Ammonium Molybdate/ kg seed), T₇ (RDF + 25 kg ZnSO₄/ha) and T₈ (RDF + 25 kg ZnSO₄/ ha +Seed inoculation with Rhizobium + PSB + 1.0g Ammonium Molybdate/ kg seed) and three replications with lentil variety NDL-1.The soil of experimental field was silt loam in texture, pH: 8.45, EC: 0.34 dSm⁻¹, O.C: 0.31%, Available N 137 kg ha⁻¹, available P 12 kg ha⁻¹, available K 211 kg ha⁻¹ and bacterial population (33.0 cfu).The highest uptake of N (91.55 kg ha⁻¹), P (8.57 kg ha⁻¹), Zn (654.66 g ha⁻¹) and Mo (278.69 g ha⁻¹) by lentil crop was found with the treatments T₈, followed by T₆. The maximum growth, yield and yield attributing characters were recorded in T₈, which was statistically at par with T₆ and significantly superior with rest of the treatments. Whereas maximum 1000 seed weight (26.00) also was recorded in the treatment T₈, which was statistically at par with rest of the treatments. The minimum 1000 seed weight was recorded in control.

Keywords
Rhizobium, PSB, Ammonium molybdate and Zinc sulphate

Introduction

Lentil (Lens culinaris L.) is an important Rabi pulse crop extensively grown in India. The yield level of lentil is generally low because it is less cared crop and mostly grown in poor soil without manures and fertilizers. Regular depletion of nutrient resources of soil has led to emergence of several nutrient deficiencies in many crops including lentil. This is because the greater is the production, the higher and faster are the rate of nutrients exhalation from the soil. As a leguminous crop, it utilizes atmospheric nitrogen to meet its partial nitrogen requirement and thus occupies an important place in crop rotation in different part of the country. It is the most suitable crop for rainfed conditions, because of its deep root system and capability to stand in drought condition. In comparison to any other rabi crops of similar condition, except gram, it is greatly esteemed for its ability to give
satisfactory yield even under sub-optimum condition and in year of low winter rainfall.

Lentil seeds contain about 11.20 percent water, 25.0 percent protein, 1.0 percent fat, 55.8 percent carbohydrate, 3.7 percent fiber and 3.3 percent ash. The role of lentil as a legume crop in building up soil fertility is well known.

Biofertilizers are gaining importance as they are ecofriendly, non-hazardous and non-toxic. A substantial number of bacterial species, mostly those associated with the plant rhizosphere, may exert a beneficial effect upon plant growth. Biofertilizers include mainly the nitrogen fixing, phosphate solubilizing and plant growth promoting micro-organism. Inoculating pulse crops with rhizobia to add nitrogen is routine for most growers. The presence of efficient and specific strains of Rhizobium in the rhizosphere is one of the most important requirements for proper establishment and growth of grain legume plant. Phosphate solubilizing bacteria partly solubilizes inorganic and insoluble phosphate and improves applied phosphorus use efficiency stimulating plant growth by providing hormone, vitamin and other growth promoting substances (Gyaneshwar et al., 2002).

The function of most micronutrients in plants and soils for the most part is widely misunderstood. One example of this is zinc and its relative importance in plants’ growth. Zinc plays a vital role in the synthesis of protein and nucleic acid and help in the utilization of nitrogen and phosphorus in plant. It also promotes nodulation and nitrogen fixation of leguminous crops.

Molybdenum is a trace element found in the soil and is required for growth of most biological organisms including plants and animals. Molybdenum plays a vital role in nitrogen fixation through its effect on nitrogenase enzyme of nodule in leguminous plants. The chief role of molybdenum is to activate nitrate reductase enzyme during nitrogen metabolism (Possingham, 1956, 57).

Materials and Methods

The experiment was conducted during Rabi season of 2015-16 at G.P.B. Farm of the Narendra Deva University of Agriculture and technology, Kumarganj, Faizabad U.P. The experiment was laid out in a Randomized Block Design with eight treatment combination viz. T1(control), T2 (Seed inoculation with *Rhizobium* + PSB), T3 (Seed inoculation with *Rhizobium* + PSB+ 1g Ammonium Molybate/ kg seed), T4 ((RDF, 20:60:20 kg N, P2O5 and K2O), T5 (RDF + Seed Inoculation with *Rhizobium* + PSB), T6 (RDF+ Seed Inoculation with *Rhizobium* + PSB+1 g Ammonium Molybate/ kg seed), T7 (RDF + 25 kg ZnSO4/ha) and T8 (RDF + 25 kg ZnSO4 / ha +Seed inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybate/ kg seed) with three replications. The soil of experimental field was silt loam in texture, pH: 8.45, EC: 0.34 dSm-1, O.C: 0.31%, Available N 137 kg ha-1, available P 12 kg ha-1, available K 211 kg ha-1. The sources of N, P, K, Zn and Mo were urea, single superphosphate, muriate of potash ammonium molybdate and zinc sulphate respectively. The seeds were sown on 29th November 2015 with seed rate of 40 kg/ha and at a distance of 25 cm line to line. Crop management practices were done as perschedule and necessity.

After complete emergence of seed, plant to plant spacing of 10 cm was maintained. There after plant population per square meter was counted. The plant height was measured from the ground level to top position of plant in cm with the help of meter scale based on five randomly selected plants and averaged out for each plant. The observation on plant height
was recorded at harvest stages of crop. For counting number of nodules per plant, five plants were selected and up rooted with the help of khurpi and washed without any damage to the root. The number of nodules per plant was counted at 60 DAS. Nodules were carefully detached from the roots of 5 selected plants from each replication and pooled together. The number of nodules per plant was calculated by dividing the total number of nodules with the number of plants. The fresh weight of nodules of five selected plants was recorded at 60 days stage, and their average was calculated. After recording the fresh weight, the nodules were oven dried at 60°C for 8 hours to a constant weight and dry weight of nodules were recorded. Nitrogen, phosphorus and molybdenum content in seed and stover was determined by micro kjeldahl, vanadomolybdo phosphoric yellow colour, using water and ammonium oxalate extractant method, respectively (Jackson, 1973). The zinc content in the plant was estimated by atomic absorption spectrophotometer using DTPA extractant (Shaw and Dean, 1952). Nutrient uptake (seed and stover) was calculated with the help of following formulae:–

\[
\text{Nutrient uptake (kg ha}^{-1}) = \frac{\text{Nutrient content in seed (kg) x Seed yield (kg/ha)}}{100} + \frac{\text{Nutrient content in straw (kg) x Straw yield (kg/ha)}}{100}
\]

The recovery of seeds from the total dry matter is considered as harvest index, which is expressed in percentage. It was calculated by the following formulae.

\[
\text{Harvest index} (%) = \frac{\text{Seed yield}}{\text{Biological yield}} \times 100
\]

The total number of pods in 5 randomly selected plants were counted and averaged to get number of pods per pant. The number of pods in randomly selected five plants from each replication was counted for seeds and number of grains per pod was calculated. From each treatment 1000 seed were counted and weighed to express the weight in gram.

Results and Discussion

Growth

Data present in table 1 reveal that seed inoculation with rhizobium, PSB, ammonium molybdate and application of RDF along with zinc sulphate, recorded significant increase all growth parameters (plant height, number of nodules at 60 DAS, fresh and dry weight of nodules at 60 DAS).

It clearly indicates that the treatments had no effect on plant population and statistically they were at par. Maximum plant height (58.24 cm) was recorded with the treatment T8 which was statistically at par with the treatment T6 and significantly superior over rest of treatments. The plant height was significantly influenced by various treatments.

The application of biofertilizers, micronutrients and RDF enhanced the plant height appreciably at harvest stages. The maximum plant height was recorded in the T8 (RDF + 25 kg ZnSO4 / ha + Seed inoculation with Rhizobium + PSB + 1.0g Ammonium Molybdate/ kg seed). Increase in plant height might be attributed to the fact that the better nourishment causes beneficial effects such as accelerated rate of photosynthesis, assimilation, cell division and vegetative growth. These results are in agreement with the findings of Singh et al., (2007).

The highest number of nodules (8.80), fresh (25.26 mg) and dry (5.05 mg) weight of nodules plant\(^{-1}\) was recorded with the treatment T8, which statistically at par with the treatment T6 and significantly superior over rest of the treatments. The highest weight of nodules plant\(^{-1}\) was also recorded with the treatment...
It might be due to the enhanced and established good root system by the seed treatment with rhizobium, ammonium molybdate and application of ZnSO₄. Favourable responses of Rhizobium, Zn and Mo have also been reported by Johal and Chahal, 1994 and Kumpawat and Manohar, 1994.

Yield

The data (Table 1) on yield and yield attributes of lentil clearly show that all the parameters significantly higher in all the treatments over control.

It was observed that the maximum grain (1457 kg ha⁻¹) yield was recorded with the treatment T₈ (RDF + 25 kg ZnSO₄ / ha + Seed inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybdate/ kg seed) which was statistically at par with treatment T₆ (RDF+ Seed Inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybdate/ kg seed) and significantly superior over rest of the treatments.

The minimum grain (860 kg ha⁻¹) yield was obtained in the control. Similarly, maximum straw yield (2365 kg ha⁻¹) was recorded with the treatment T₈, which was statistically at par with the treatments T₆ and significantly superior over the rest of the treatments.

The grain and straw yield of lentil were significantly influenced by various treatments. The maximum increment in grain as well as straw yield were observed with the treatment T₈ (RDF + 25 kg ZnSO₄ / ha + Seed inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybdate/ kg seed) followed by T₆ (RDF+Seed inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybdate/ kg seed). Grain and straw yield under various treatments (T₈, T₇, T₆, T₅, T₄ and T₃) gave better results over control. The increase in grain and straw yield of lentil might be due to improvement in the efficiency and utilization of native as well as applied nutrients. These results also corroborate with the findings of Kumar *et al.*, (1993), Hafeez *et al.*, (2000) and Shah *et al.*, (2000).

Yield attributes

The data (Table 1) on yield attributing characters of lentil as affected by different treatments clearly show the significant difference for number of pods plant⁻¹ and number of seeds pod⁻¹ in lentil.

The maximum number of pods (116.40) per plant were recorded with the treatment T₈ (RDF + 25 kg ZnSO₄ / ha + Seed inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybdate/ kg seed), which was statistically at par with the treatment T₆ (RDF+ Seed Inoculation with *Rhizobium* + PSB + 1.0g Ammonium Molybdate/ kg seed), having 106.40 pods plant⁻¹ and significantly superior over rest of the treatments.

The minimum number of pods per plant was recorded under control. Similar trend was also recorded with respect to no. of seeds pod⁻¹.

Minimum number of seeds (1.20) per pod recorded under the control.

The maximum test weight (26.00 g) was recorded in treatment T₈ which was statistically at par with rest of the treatments. The minimum 1000 seed weight was recorded in control.

The increase in yield attributes might be mainly due to increase in photosynthesis activity of leaves, translocation of photosynthates from source to sink and nutrient’s uptake. These results corroborate with the finding of Mishra and Tiwari (2001) and Hossain *et al.*, (2010).
Table 1 Effect of biofertilizers and micronutrients on yield attributes and yield of lentil crop

<table>
<thead>
<tr>
<th>Si. No.</th>
<th>Initial plant population(\times 10^3)</th>
<th>Plant height (cm)</th>
<th>No. of nodules at 60 DAS</th>
<th>Weight of nodules at 60 DAS (mg)</th>
<th>No. of pods plant(^{-1})</th>
<th>No. of seeds pod(^{-1})</th>
<th>1000 seed weight (g)</th>
<th>Yield (kg ha(^{-1}))</th>
<th>Grain</th>
<th>Straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>84.33</td>
<td>49.36</td>
<td>16.40</td>
<td>19.32</td>
<td>3.87</td>
<td>96.60</td>
<td>1.20</td>
<td>24.00</td>
<td>860</td>
<td>1657</td>
</tr>
<tr>
<td>T2</td>
<td>84.67</td>
<td>50.54</td>
<td>19.00</td>
<td>20.81</td>
<td>4.16</td>
<td>98.60</td>
<td>1.40</td>
<td>24.30</td>
<td>926</td>
<td>1725</td>
</tr>
<tr>
<td>T3</td>
<td>84.67</td>
<td>51.07</td>
<td>20.00</td>
<td>22.09</td>
<td>4.42</td>
<td>100.40</td>
<td>1.40</td>
<td>27.70</td>
<td>988</td>
<td>1789</td>
</tr>
<tr>
<td>T4</td>
<td>85.00</td>
<td>51.37</td>
<td>18.60</td>
<td>20.29</td>
<td>4.06</td>
<td>102.00</td>
<td>1.40</td>
<td>24.80</td>
<td>1168</td>
<td>2068</td>
</tr>
<tr>
<td>T5</td>
<td>85.33</td>
<td>51.74</td>
<td>22.60</td>
<td>23.71</td>
<td>4.54</td>
<td>104.40</td>
<td>1.60</td>
<td>25.20</td>
<td>1226</td>
<td>2125</td>
</tr>
<tr>
<td>T6</td>
<td>85.67</td>
<td>53.56</td>
<td>24.60</td>
<td>23.90</td>
<td>4.78</td>
<td>108.60</td>
<td>1.80</td>
<td>25.70</td>
<td>1330</td>
<td>2236</td>
</tr>
<tr>
<td>T7</td>
<td>85.00</td>
<td>52.04</td>
<td>21.60</td>
<td>22.29</td>
<td>4.46</td>
<td>106.40</td>
<td>1.60</td>
<td>25.50</td>
<td>1275</td>
<td>2175</td>
</tr>
<tr>
<td>T8</td>
<td>85.67</td>
<td>58.24</td>
<td>25.20</td>
<td>25.26</td>
<td>5.05</td>
<td>116.40</td>
<td>1.80</td>
<td>26.00</td>
<td>1457</td>
<td>2365</td>
</tr>
<tr>
<td>SEm±</td>
<td>0.50</td>
<td>1.57</td>
<td>1.26</td>
<td>0.26</td>
<td>0.13</td>
<td>3.21</td>
<td>0.05</td>
<td>0.73</td>
<td>44.33</td>
<td>59.28</td>
</tr>
<tr>
<td>C.D. (P=0.05)</td>
<td>NS</td>
<td>4.76</td>
<td>3.81</td>
<td>0.79</td>
<td>0.40</td>
<td>9.75</td>
<td>0.14</td>
<td>NS</td>
<td>134.47</td>
<td>179.79</td>
</tr>
</tbody>
</table>

Table 2 Effect of biofertilizers and micronutrients on content and uptake of nutrients by lentil crop

<table>
<thead>
<tr>
<th>Si. No.</th>
<th>Total nutrient content (kg ha(^{-1}))</th>
<th>Total nutrient uptake Kg ha(^{-1})</th>
<th>g ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>T1</td>
<td>5.04</td>
<td>0.36</td>
<td>40.65</td>
</tr>
<tr>
<td>T2</td>
<td>5.12</td>
<td>0.38</td>
<td>40.65</td>
</tr>
<tr>
<td>T3</td>
<td>5.13</td>
<td>0.40</td>
<td>40.71</td>
</tr>
<tr>
<td>T4</td>
<td>5.15</td>
<td>0.41</td>
<td>40.74</td>
</tr>
<tr>
<td>T5</td>
<td>5.16</td>
<td>0.43</td>
<td>40.78</td>
</tr>
<tr>
<td>T6</td>
<td>5.27</td>
<td>0.47</td>
<td>41.04</td>
</tr>
<tr>
<td>T7</td>
<td>5.21</td>
<td>0.45</td>
<td>40.82</td>
</tr>
<tr>
<td>T8</td>
<td>5.35</td>
<td>0.49</td>
<td>41.48</td>
</tr>
<tr>
<td>SEm±</td>
<td>0.15</td>
<td>0.01</td>
<td>0.64</td>
</tr>
<tr>
<td>C.D. (P=0.05)</td>
<td>0.46</td>
<td>0.03</td>
<td>1.94</td>
</tr>
</tbody>
</table>

Nutrient content and uptake

The data presented in Table 2 revealed that, the values of total nitrogen, phosphorus, zinc and molybdenum respectively content attain the level of significance with the mean of 5.35% respectively. However highest total N, P, Zn and Mo content were recorded in treatment T8, this treatment was statistically at par with T6 and significantly superior with rest of other treatments. The minimum total nitrogen content was recorded in control treatment. Treatment RDF + 25 kg ZnSO\(_4\) / ha + Seed inoculation with Rhizobium + PSB + 1.0g Ammonium Molybdate/ kg seed recorded significant total N, P, Zn and Mo content over control treatment and was found at par with RDF+Seed inoculation with Rhizobium + PSB + 1.0g Ammonium Molybdate/ kg seed.

The data on uptake of nutrients (N, P, Zn and Mo) by lentil crop as influenced by various treatments have been presented in Table 2. It
clearly indicates that the maximum uptake of N, P, Zn and Mo (91.55 kg ha\(^{-1}\)) was recorded with the treatment T\(_8\) (RDF + 25 kg ZnSO\(_4\) / ha + Seed inoculation with \(Rhizobium\) + PSB + 1.0g Ammonium Molybdate/ kg seed) which was significantly superior over rest of the treatments. The nitrogen uptake increased with the application of fertilizers with or without biofertilizers. It might be due to favorable soil conditions which enhanced nutrient availability and nutrient uptake as well as a better growth and activity of roots. Similar findings were observed by Idris and Snadhu (1979), Jagdale et al., (1980), Bera et al., (2013).

The data in respect of phosphorus uptake by lentil present in the Table 2. The maximum phosphorus uptake (8.57 kg ha\(^{-1}\)) was recorded with the treatment T\(_8\) (RDF + 25 kg ZnSO\(_4\) / ha + Seed inoculation with \(Rhizobium\) + PSB + 1.0g Ammonium Molybdate/ kg seed) which was significantly superior over rest of the treatments. The minimum phosphorus uptake (3.87 kg ha\(^{-1}\)) was recorded in control. Application of RDF, Zn and Mo with biofertilizers contained highest amount of phosphorus as compared to the control. Similar findings were also observed by Singh and Manohar (1982).

The maximum zinc uptake (654.66 g ha\(^{-1}\)) was recorded with the treatment of T\(_8\) (RDF + 25 kg ZnSO\(_4\) / ha + Seed inoculation with \(Rhizobium\) + PSB + 1.0g Ammonium Molybdate/ kg seed) which was statistically at par with treatment T\(_6\) (RDF + Seed inoculation with \(Rhizobium\) + PSB + 1.0g Ammonium Molybdate/ kg seed) having 612.62g ha\(^{-1}\) zinc uptake and significantly superior over rest of the treatments. The minimum zinc uptake (406.63 g ha\(^{-1}\)) was recorded in control. Addition of biofertilizers, ZnSO\(_4\) and ammonium molybdate with RDF increased zinc uptake. The increase might be due to better crop growth and development.

Similar results have been reported by Saber and Kabesh and Malewar et al., (1990).

The data on molybdenum uptake by lentil crop as influenced by various treatments have been presented in Table 2. It clearly indicates that the maximum molybdenum uptake (278.69 g ha\(^{-1}\)) was recorded with the treatment (RDF + 25 kg ZnSO\(_4\) / ha + Seed inoculation with \(Rhizobium\) + PSB + 1.0g Ammonium Molybdate/ kg seed) which was statistically at par with treatment (RDF + Seed inoculation with \(Rhizobium\) + PSB + 1.0g Ammonium Molybdate/ kg seed) having 257.83g ha\(^{-1}\) molybdenum uptake and significantly superior over rest of the treatments. The minimum molybdenum uptake (171.10 g ha\(^{-1}\)) was recorded in control. Application of RDF, Zn and Mo with biofertilizers contained highest amount of molybdenum as compared to the control. Similar findings were also observed by Kumar and Sharma (2005).

References

Hossain, M.A., Qudus, M.A. and Mondol, R.H.

