Review Article

Review on Plant-Trichoderma-Pathogen Interaction

Akansha Singh*, Nandini Shukla, B.C. Kabadwal, A.K. Tewari and J. Kumar

Department of Plant Pathology, G.B.P.U.A. & T. Pantnagar, Uttrakhand-263145, India

*Corresponding author

A B S T R A C T

Trichoderma spp. are the most successful biocontrol agents as more than 60% of the registered bio-fungicides used in today’s agriculture belongs to Trichoderma-based formulation. Plant-Trichoderma-pathogen is a complex network of multiple mechanisms. Presently many labs tried to dissecting the networking of three way cross talk in Plant-Trichoderma-Pathogen interaction. Proteome and genome analysis have greatly enhanced the ability to conduct holistic and genome-based functional studies as they have identified and determined the role of a variety of novel genes and gene-products, including ABC transporters, enzymes and other proteins that produce or act as novel elicitors of induced resistance, proteins responsible for a gene-for-gene avirulent interaction between Trichoderma spp. and plants, antagonism related gene, plant proteins specifically induced by Trichoderma, etc. but there is still much more left than what has been searched. Understanding these mechanisms at the molecular level would help in designing the strains with superior biocontrol properties. Here we review our current understanding of the genetics of interactions of Trichoderma with plants and phytopathogens and their role in mode of action. These factors are expected to enhance not only the rapid identification of effective strains and their applications but also indicate the potentials for improvement of natural strains of Trichoderma.

Keywords
Plant-Trichoderma-Pathogen network, Biocontrol genes, PGPF, MAMPs, Induced resistance, Mode of action

Article Info
Accepted: 20 January 2018
Available Online: 10 February 2018

Introduction

World population of 9.1 billion people in 2050 would require raising of overall food production by some 70% (FAO, 2009). The substantial increase in food grain production over the years has helped to meet the food security needs of the country, but the number of biotic and abiotic stress causes the yield losses up to a large extent. Biotic constraints include fungi, bacteria, virus, nematodes weeds, and insects which causes yield loss up to 31-42% (Agrios, 2005). Therefore pesticide consumption was also increases year by year as 45.39 thousand tons pesticides were consumed in the year 2012-13 (Krishijagran, 2015). Besides affecting the environment and non-target organisms, continuous and tremendous use of chemical pesticides creates high selection pressure on pathogens which force to mutation inside the pathogens and development of pesticide resistance races such as dodine and metalaxyl resistance in Venturia inequalis and Phytophthora infestans and respectively (Meszka et al., 2008, Matson et al., 2015). Pesticide resistance and environment threat due to injudicious use of chemical pesticides for disease management
employs the introduction of a new alternative as biological control. The use of biofertilizers and biopesticides is an alternative for sustaining high production with low ecological impact. Besides the classic mycorrhizal fungi and Rhizobium bacteria, other plant-growth-promoting fungi such as Trichoderma spp. (Teleomorph: Hypocrea) can stimulate plant growth by suppressing plant diseases (Van Wees et al., 2008). Biological control agents, comprises a number of fungus and 90% of such application have been carried out from different strains of Trichoderma, the antagonistic properties of which are based on the activation of multiple mechanisms.

Biological control is a key constituent of integrated pest management that has generated interest among farmers for ecological and sustainable disease management. The genus Trichoderma possessing reasonable biological control attributes belonging to species T. Harzianum, T. resseyi, T. asperellum, T. viridae, T. virens.

Trichoderma spp. are ubiquitous and often predominant components of the mycoflora in soil, litter, organic matter and rhizospheric ecosystem of all climatic zones as saprophytes. Recent discoveries show that they are opportunistic, avirulent plant symbionts, as well as being parasites of other fungi. Strains of Trichoderma Spp. are endophytes establish robust and long-lasting colonizations of root surfaces and penetrate into the epidermis. However, the ability of these fungi to sense, invade, and destroy other fungi has been the major driving force behind their commercial success as biopesticides. Trichoderma defend the plants by their direct and indirect effect on plant-pathogen-soil environment interaction. These fungi not only protect plants by killing the pathogens mainly other fungi and nematodes but also induce resistance against plant pathogens, impart abiotic stress tolerance, improve plant growth and vigor, nutrients uptake and bioremediation of heavy metals and environmental pollutants. In addition, this genus comprises fungi that produce secondary metabolites of clinical significance and enzymes with widespread industrial application. They produce and/or release a variety of compounds that induce localized or systemic resistance responses. These root–microorganisms interaction cause significant changes to the plant metabolism. Plants are protected from numerous pathogens by responses that are similar to systemic acquired resistance and rhizobacteria-induced systemic resistance. Root colonization by Trichoderma spp. also frequently enhances root growth and development, crop productivity, uptake and use of nutrients and resistance to biotic and abiotic stress. Detailed study as how Trichoderma evolved to interact with other fungi and with plants will improve and expand their applications in biological control programme. The ability to attack on soil borne plant pathogens dominated the interest in Trichoderma for many years. From past few years the researchers show their interest on plant disease resistance as [induced systemic resistance (ISR); to some extent, systemic acquired resistance (SAR)] induced by the Trichoderma-root symbiosis (Harman et al., 2004 and Hermosa et al., 2012).

Trichoderma spp. is most successful biofungicides in present agriculture as more than 60 % of the registered biofungicides worldwide arrived from Trichoderma-based formulations (Verma, et. al., 2007). In India alone, about 250 products are available for field applications but the percentage share of bio-fungicides is only a small part of the fungicides market and dominated by synthetic chemicals (Singh, et. al., 2009). The major drawback of bio fungicides are slow to act, and influenced by environmental factors. Hence their efficacy under field conditions is restricted. Here, “genetic manipulation” to
design new strains that are more effective than the native ones might prove useful. It could be achieved by gaining knowledge on the molecular mechanisms of interactions of these organisms with other biotic and abiotic factors. We summarize here the recent findings on the genetics of three way interactions of Trichoderma with plants and pathogens and their mode of action.

Biocontrol genes of Trichoderma

The genome sequencing of Trichoderma species has provided exclusive data for phylogenetic and bioinformatic analyses toward understanding the roles of these opportunists in agroecosystems and forced the development of systems biological approaches, initiated and enhanced whole-genome expression analysis. At present the, genome sequences of seven species: *Trichoderma harzianum, Trichoderma asperellum, Trichoderma reesei, Trichoderma virens, Trichoderma atroviride, Trichoderma longibrachiatum and Trichoderma citrinoviride* are available (Sharma et al., 2011). Genomic studies reveal that Trichoderma spp. contains many valuable genes with great variety of expression patterns, which allows these fungi to use as biocontrol agents, plant growth promotional activities and their environmental adaptation (drought, salt, heavy metal tolerance etc.). Several laboratories have recently started or planned to use proteomic and genomic analysis to frame the changes that occur in the Trichoderma, plant, and pathogen when they interact to each other, especially when an increase in disease resistance is generated.

Planta-Trichoderma interaction

Plant growth promotional activity

Positive effect on plant development has been demonstrated for several Trichoderma Secondary Metabolites. Koninginins, 6-pentyl-a-pyrene, trichocaranes A – D, harzianopyridone, cyclonerodiol, harzianolide and harzianic acid are examples of isolated compounds that affect plant growth in a concentration dependent manner (Vinale et al., 2014).

Effect on seed germination

Seed biopriming and seed treatment with Trichoderma spp. trigger the release and/or production of enzymes and phytohormones which are involved in seed germination. It also enhances the speed of germination and seedling vigor. Enhanced germination percent have been found in okra, maize, beans, mustard, chilli, soyabean, chickpea, tomato etc. (Mukhtar, 2008, Okoth et al., 2011, Rahman et al., 2012, Lalita et al., 2012, Kumar et al., 2014, Babychan and Simon, 2017). Many seed invading pathogens such as Pythium are unable to attack on host due to faster seed germination and seedling vigor (Matsouri, et al., 2010). Bezuidenhout et al., (2012) reported that Trichoderma harzianum produces a metabolite as gliotoxin that may mimic the plant growth hormone gibberellic acid which is involved seed germination process. Seed and/ or soil treatment with Trichoderma enhances seed germination percentage, directly by activating enzymes and phythormones and indirectly by altering soil microflora and nutrient availability in soil. By this way farmers get better field stand.

Effect on plant morphology

The rhizosphere supports microbial populations capable of exerting beneficial, neutral, or detrimental effects on plant growth. Trichoderma spp. are able to enhance rice growth components including plant height, leaf number, tiller number, root length and root fresh weight. In maize (*Zea mays*) plants, Trichoderma inoculation affects root
system architecture including enhanced root biomass and increased root hair development (Bjorkman et al., 1998; Harman et al., 2004). The root system is important for plant fitness because it provides anchorage, contributes to water use efficiency, and facilitates the acquisition of mineral nutrients from the soil. The two Trichoderma species, Trichoderma harzianum and Trichoderma virens has been found for growth promotional activity which was correlated with prolific formation of lateral roots (Contreras-Cornejo et al., 2009). The ability of Trichoderma spp. to produce phytohormones is the key factor in the increase in rice plant height (Chowdappa et al., 2013). Many lines of evidence strongly support a role for auxin in the regulation of root system architecture. T. virens is able to produce auxins as indole-3-acetic acid (IAA), indole-3-acetaldehyde (IAAld), and indole-3-ethanol (IEt), which has been play roles in plant growth and development (Contreras-Cornejo et al., 2009). Cai and coworker (2013) reported that harzianolide produced by Trichoderma spp. can improve the early stage of plant development through the enhancement of root length. Leaf number and tiller number has been found significantly higher in Trichoderma spp. treated rice plants compared to NPK treatment and control (Dini et al., 2014). Line of evidence for enhancement of number of leaves, tillers, branches, flowers, fruits and plant height by Trichoderma spp. are available (Neumann and Laing, 2006, Sajeesch, 2015). Cai et al., (2013) reported that harzianolide produced by Trichoderma spp. can improve the early stage of plant development through the enhancement of root length. These morphological modification are possible because of the ability of the Trichoderma spp. to act through several mechanisms such as environmental buffering (against pH, drought, waterlogging, cold and heat), Phosphorus solubilization, organic matter decomposition, chilation and siderophore production.

Effect on plant physiology

Trichoderma spp. are able to alter several physiological processes which include net photosynthetic rate, stomatal conductance, transpiration, internal CO₂ concentration, water use efficiency and nutrient uptake. Better nutrient uptake will enhance the physiological processes within the plants treated with Trichoderma spp. leading to good growth performance (Doni et al., 2014, Saba et al., 2012). Micro nutrients such as Nitrogen and Magnesium are the component of chlorophyll and enzymes of m-RNA synthesis and gene regulation engaged in photosynthesis. Trichoderma harzianum significantly increased the ability of rice plants to tolerate drought stress and increase rice water-holding capacity (Shukla et al., 2012). Approximately three folds increase in net photosynthetic rate and stomatal conductance and two fold increase in water use efficiency in Trichoderma treated rice plants as compare to NPK treated plants has been observed (Doni et al., 2014). High photosynthetic rates coupled with low transpiration rates in Trichoderma treated plants indicate high water use efficiency (Thakur et al., 2010, Doni et al., 2014). Low internal CO₂concentration and high photosynthetic rate in Trichoderma treated plants are correlated as the activity of carboxylation by CO₂ fixation for glucose production during carbohydrate metabolism very active (Thakur et al., 2010). The activity of Trichoderma spp. that contributes to the enhancement of root growth and distribution was also considered as a key factor to the prolonged photosynthetic activity and the delayed senescence in rice plants (Mishra and Salokhe, 2011). Trichoderma releases cellulases which degrade cellulose and enhance the organic matter and nutrients in
rhizosphere. Jiang et al., (2011) Solubilization and chelation of minerals can enhance nutrient availability which is engaged in plant metabolism leading to the enhancement of plant physiological activity (Herman, et al., 2004).

Effect on yield and quality of produce

Trichoderma effect on seed germination, plant morphology and physiology leads to better field stand and it also accelerate the vegetative and reproductive growth of plants. It enhances number of branches, spikes, flowers and fruits per plant. In many cases average weight of individual fruit is also comparatively higher. Higher yield by the application of *Trichoderma* species in mustard, wheat, corn, tuberose, sugarcane, tomato, okra etc. has been found (Haque et al., 2012, Katatny and Idres, 2014, Naznin et al., 2015., Shrivastava et al., 2006, Tucci et al., 2011, Idowu et al., 2016).

Induced resistance against biotic and abiotic stress

Plants have an immune system that is able to detect motifs or domains with conserved structural traits typical of entire classes of microbes called as microbe-associated molecular patterns (MAMPs) (Hermosa et al., 2012). The ability of *Trichoderma* spp. hyphae to release MAMPs for molecular recognition may contribute for signal cascade by signaling molecule within the plant such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Earlier it was believed that JA and/or ET are the signaling molecule for tichoderma induced resistance but recent finding shows that involvement of SA also. Colonization of Arabidopsis root by *T. asperellum* produces a clear ISR through an SA signalling cascade, and both the SA and JA/ET signalling pathways combine in the ISR triggered by cell-free culture filtrates of *Trichoderma* (Yoshioka et al., 2011). *Trichoderma* is able to trigger a long-lasting upregulation of SA gene markers in plants unchallenged by pathogens, although when plants are infected by a pathogen such as *B. cinerea*, the pretreatment with *Trichoderma* may modulate the SA-dependent gene expression and, soon after infection, the expression of defence genes induced through the JA signal transduction pathway occurs, causing ISR to increase over time (Tucci et al., 2011); Elicitors released by *Trichoderma* spp. are also involved in triggering expressions of defense protein within the plant (Thakur and Sohal, 2013). In this way, plant immunity against pathogens is induced and in turn improves plant growth. A common feature of induced resistance responses of beneficial microbes is priming for enhanced defence. In primed plants, defence responses are not activated directly, but are accelerated upon attack by pathogens or other stress resulting in faster and stronger resistance to the attacker encountered (Van et al., 2008). *Trichoderma* act locally and systemically that involve signaling cascade and activation and accumulation of defense related antimicrobial compounds which includes enzymes as Phenyl ammonia lyase (PAL), Peroxidase, polyphenol oxidase, Lipoxygenase; Proteins as PR (pathogenesis related protein), Terpenoid, phytoalexin as Rishitin, Lubimin, Phytouberol, coumarin, solevetivone, Resveratol and antioxidant as ascorbic acid, glutathione etc. (Howell et al., 2000).

Plant-Trichoderma networking

Plant immunity and development are interconnected in a network of hormone-signalling pathways (Pieterse et al., 2009). There is a cross-communication between SA, JA and ET, the central players in defence and the response pathways of other hormones such as abscisic acid gibberellic acid and auxin commonly associated with plant development.
and abiotic stress, IAA, related to plant growth and lateral root development, and gibberellins, which control plant growth by regulating the degradation of growth-repressing DELLA proteins (Hermosa et al., 2012). In Trichoderma, the ACCD activity reduces the availability of ACC necessary for ET biosynthesis. Reductions in ET promote plant growth via gibberellin signalling by increasing the degradation of DELLA proteins. Moreover, gibberellins may control the onset of JA- and SA-dependent defence responses of the plant through the regulation of DELLA protein degradation (Brotman et al., 2013). ET and IAA in the roots can reciprocally regulate each other’s biosynthesis (Stepanova et al., 2007). In Trichoderma IAA contributes to exogenous auxin-stimulated ET biosynthesis via ACC synthase (Hansen and Grossmann, 2000), which in turn triggers an increase in abscisic acid biosynthesis. Depending on the timing and outcome of Trichoderma stimuli, phytohormone homeostasis will control plant development and immune responses.

Trichoderma-pathogen interaction

Trichoderma prove antagonistic interaction with pathogen by following mode of action.

Mycoparasitism

The process of mycoparasitism involves direct attack of one fungal species on another one. Mycoparasitism is one of the main mechanisms involved in the antagonisms of *Trichoderma*. The events leading to mycoparasitism are complex, and take place as follows: Chemotropic growth of *Trichoderma*, recognition of the host, coiling and appresoria formation, secretion of hydrolytic enzymes, penetrations of the hyphae and lysis of the host. This complex process includes sequential events, involving cycle of recognition by the binding of carbohydrates in the *Trichoderma* cell wall to lectins on the target fungus, hyphal coiling and appresoria formation which contains higher amount of osmotic solutes such as glycerol and induces penetration, attack on cellular machinery via producing several fungitoxic cell-wall-degrading enzymes glucanases, chitinases and proteases (Harman et al., 2004), cumulative action of these compounds result in parasitism of the target fungus and dissolution of the cell walls. At the site of appressoria formation holes can be produced in the target fungus leads direct entry of *Trichoderma* hyphae into the host lumen and finally killing of the host (Kumar, 2013). There are at least 20-30 genes, proteins and other metabolites that are directly involved in this interaction. The functions of different glucanases and chitinases in the process of mycoparasitism are well studied from *Trichoderma* spp. using gene-for-gene experiments and future studies will definitely help us to understand this complex process (Daguerre et al., 2014).

Antibiosis

Antibiosis is an antagonistic interaction involving low molecular weight diffusible secondary metabolites or antibiotics produced by a microorganism that are detrimental for the growth of pathogens. *Trichoderma* spp. produces a variety of antibiotics, such as gliovirin, gliotoxin, viridin, viridiol, koninginins, pyrones and peptaibols, against fungal phytopathogens (Howell, 2003; Harman et al., 2004). TrichokoninsVI, a type of peptaibol from *Trichoderma pseudokoningii* SMF2, exhibited antibiotic activities by inducing extensive apoptotic programmed cell death in fungal pathogens (Shi et al., 2012). Gliotoxin and gliovirin are the two most important *Trichoderma* secondary metabolites belonging to P and Q group strain respectively “P group strains of *Trichoderma* (Gliocladium) virens is active against *P. ultimum*, but not against *R. solani*
and Q group is very active against *R. solani*, but less against *P. ultimum*” (Howell, 2000). “The T. virens veA ortholog vel1 (VELVET protein Vel1) is involved in regulation of gliotoxin biosynthesis, biocontrol activity and many other secondary metabolism-related genes” (Mukherjee et al., 2013). “Koninginin D also inhibited the growth of soil-borne plant pathogens, such as *Rhizoctonia solani*, *Phytophthora cinnamomi*, *Pythium middletonii*, *Fusarium oxysporum* and *Bipolaris sorokiniana*” (Dulop et al., 1989). Viridins isolated from diverse *Trichoderma* spp. (*T. koningii*, *T. viride*, *T. virens*), prevents spore germination of *Botrytis allii*, *Colletotrichum lini*, *Fusarium caeruleum*, *Penicillium expansum*, *Aspergillus niger* and *Stachybotrys atrata* (Singh et al., 2005). Harzianic acid isolated from a *T. harzianum* strain showed in vitro antibiotic activity against *Pythium irregulare*, *Sclerotinia sclerotiorum* and *R. solani* (Vinale et al., 2009). The isolation and over expression of *tri5* (trichodiene synthase) gene in *T. brevicompactum* Tb41tri5 transformant increased the trichodermin production and fungal activity against *Aspergillus fumigates* and *Fusarium spp.* (Tijerino et al., 2011). *T. asperellum* strain produces two asperelines (A and E) and five trichotoxins (T5D2, T5E, T5F, T5G and 1717A) which can be associated with antibiosis (Brito et al., 2014).

Competition

Competition for substrates is the most important factor for fungi as is competition for light in the case of evolution of plants (Garrett, 1956). The most common reason for the death of many microorganisms growing in the vicinity of *Trichoderma* strains is the starvation due to scarcity of limiting nutrients and for rhizospheric colonization. Root exudates and rhizosphere are rich source of nutrients such as sugar, amino acids, iron, vitamins, organic acids etc. Competition for carbon is effective mode not only in *Trichoderma* but also some other fungi such as strains of *Rhizoctonia solani*, *F. oxysporum* (Sarrocco, *et al.*, 2009; Alabouvette *et al.*, 2009).

The proficient mobilization of immobile nutrients and their utilization makes it more efficient and competitive than many other soil microbes. This process could be related also to the production of organic acids, such as gluconic, citric and fumaric acids, which decrease soil pH and allow the solubilization of phosphates, micronutrients and mineral cations like iron, manganese and magnesium (Vinale *et al.*, 2008).

“In the aerobic environment (with oxygen and neutral pH) iron exists mainly as Fe3+ and tends to form insoluble ferric oxide, making it unavailable for root absorption and microbial growth (Miethke, 2013). Iron act as cofactor of numerous enzymes and an essential nutrient for growth of plants and other microorganisms. *Trichoderma* secrete siderophore, an iron chelating compounds which bind with insoluble iron (FeIII) and converted to soluble form(FeII) for plant absorption, and and inhibit the growth of plant pathogens by depriving them of iron sources (Leong, 1986).

“Siderophore bound Fe (III) undergoes reduction to Fe (II), which is catalyzed by free extracellular or membrane-standing ferric chelate reductases. If not already released extra cytoplasmatically, the iron has to be removed from the Fe (III)-siderophore complex in the cytosol. This is mediated either by intracellular ferric-siderophore reductases or, in a few cases, by ferric-siderophore hydrolases” Siderophores produced by some *Trichoderma* isolates are highly efficient chelators for iron Hence, *Trichoderma* spp. outcompetes with *Pythium* for available iron in soil and effectively controls its growth.
Table 1: Biocontrol genes of *Trichoderma* spp.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Trichoderma spp.</th>
<th>Product/Function</th>
<th>Pathogen/Abiotic stress</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvsp1</td>
<td>T. virens</td>
<td>Serine protease in cotton seedlings</td>
<td>Rhizoctonia solani</td>
<td>Pozo et al., 2004</td>
</tr>
<tr>
<td>tri5</td>
<td>T. harzianum</td>
<td>Triothecene inhibitor of protein and DNA synthesis</td>
<td>Soil borne pathogens</td>
<td>Cardoza et al., 2011</td>
</tr>
<tr>
<td>erg1</td>
<td>T. harzianum</td>
<td>Squalene epoxidase, for ergosterol synthesis and erg1 silencing provides resistance to terbinafine, an antifungal compound.</td>
<td>-</td>
<td>Godio et al., 2007</td>
</tr>
<tr>
<td>exc1, exc2, chit42, chit3, bgn13.1, prb1</td>
<td>T. harzianum</td>
<td>NAGases, Chitinases, Glucanases, Proteases synthesis</td>
<td>Fusarium oxysporum</td>
<td>Mondizar et al., 2011</td>
</tr>
<tr>
<td>TgaA, TgaB</td>
<td>T. virens</td>
<td>Antagonist activity</td>
<td>R. solani and S. rolfsii</td>
<td>Mukherjee et al., 2004</td>
</tr>
<tr>
<td>ThPG1</td>
<td>T. harzianum</td>
<td>Endopolygalacturonase for cell wall degradation.</td>
<td>R. solani and P. ultimum</td>
<td>Moren-Diez et al., 2009</td>
</tr>
<tr>
<td>Th-Chit42</td>
<td>T. harzianum</td>
<td>Mycoparasitic activity</td>
<td>Sclerotinia sclerotiorum</td>
<td>Steyaert et al., 2004</td>
</tr>
<tr>
<td>tri5</td>
<td>T. brevicipactum</td>
<td>Trichodermin for antifungal activity.</td>
<td>C. albicans A. fumigatus</td>
<td>Tijerino et al., 2011</td>
</tr>
<tr>
<td>Sm1</td>
<td>T. harzianum</td>
<td>Elicitor for triggering of plant defence</td>
<td>Biotic/abiotic stress</td>
<td>Frietas et al., 2014</td>
</tr>
<tr>
<td>Tkkel1</td>
<td>T. harzianum</td>
<td>Regulate glucosidase in A. thaliana</td>
<td>Salt, Osmotic stresses</td>
<td>Hermosa et al., 2011</td>
</tr>
<tr>
<td>eg1</td>
<td>T. longibrachiatum</td>
<td>Biocontrol activity</td>
<td>P. ultimum</td>
<td>Migheli et al., 1998</td>
</tr>
<tr>
<td>gld74</td>
<td>T. harzianum</td>
<td>Surface adherence in mycoparasitism</td>
<td>R. solani</td>
<td>Rosado et al., 2007</td>
</tr>
<tr>
<td>tac1</td>
<td>T. virens</td>
<td>Mycoparasitic activity</td>
<td>R. solani and P. ultimum</td>
<td>Abbas et al., 2017</td>
</tr>
<tr>
<td>TrCCD1</td>
<td>T. reesei</td>
<td>Carotenoid metabolism for conidial and hyphal growth</td>
<td>T. reesei</td>
<td>Zhong et al., 2009</td>
</tr>
</tbody>
</table>

Table 2: *Trichoderma* associated MAMPs

<table>
<thead>
<tr>
<th>MAMP/effect</th>
<th>Trichoderma spp.</th>
<th>Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulases</td>
<td>T. longibrachiatum</td>
<td>Activated and heat-denatured cellulases elicit melon defences through the activation of the SA and ET signalling pathways</td>
<td>Martinez et al., (2001)</td>
</tr>
<tr>
<td>Cerato-platanins Sm1/Epl1</td>
<td>T. virens</td>
<td>Hydrophobin-like SSCP orthologues that can induce expression of defence responses in cotton and maize</td>
<td>Djonovic et al., (2006),</td>
</tr>
<tr>
<td>Swollenin TasSwo</td>
<td>T. asperelloides</td>
<td>Expansin-like protein with a cellulose-binding domain capable of stimulating local defence in cucumber roots and leaves and affording local protection against B. cinerea</td>
<td>Brotman et al., (2008)</td>
</tr>
<tr>
<td>Secondary metabolites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alamethicin</td>
<td>T. viride</td>
<td>Elicitation of JA and SA biosynthesis in lima bean</td>
<td>Engelberth et al., (2001)</td>
</tr>
<tr>
<td>Trichokonin</td>
<td>T. pseudokoningii</td>
<td>Production of ROS, the accumulation of phenolic compounds at the application site and virus resistance in tobacco plants through multiple defence signalling pathways</td>
<td>Luo et al., (2010)</td>
</tr>
<tr>
<td>6-Pentyl-a-pyrene, harzianolide harzianopyridone</td>
<td>Various</td>
<td>Low-concentration metabolite activating plant defence and regulating plant growth in pea, tomato and canola</td>
<td>Vinale et al., (2008)</td>
</tr>
</tbody>
</table>
Table 3: Mode of action of *Trichoderma* spp.

<table>
<thead>
<tr>
<th>Trichoderma spp.</th>
<th>Mode of application</th>
<th>Biotic /Abiotic stress</th>
<th>Crop</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. harzianum</td>
<td>Soil and seed treatment</td>
<td>Pseudomonas syringae Pvr phaseolicola</td>
<td>Bean</td>
<td>Defensive enzymes Peroxidase, (PO) and Polyphenoloxidase (PPO)</td>
<td>Gailiti 2005</td>
</tr>
<tr>
<td>T. virens Gv29-8</td>
<td>Seedling treatment</td>
<td>Colletotrichum graminicola</td>
<td>Maize</td>
<td>AOS, OPR7, OPR8, HPL and LOX10 Gene expression</td>
<td>Djonovic et al., 2007</td>
</tr>
<tr>
<td>T. harzianum and T. asperellum</td>
<td>Soil treatment</td>
<td>Xanthomonas campestris vesicatoria</td>
<td>Tomato</td>
<td>Chitinase and β1,3-Glucanase</td>
<td>Saksirirat et al., 2009</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Seed biopriming</td>
<td>Salt stress</td>
<td>Rice</td>
<td>Proline, Malondialdehyde content, total phenol.</td>
<td>Rawat et al., 2012</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Soil treatment and soil drenching</td>
<td>Fusarium oxysporum f. sp. radicis cucumerinum</td>
<td>Cucumber, Arabidopsis thaliana</td>
<td>PAL1, CHIT1, β1,3-Glucanase, PR-1, LOX 1 gene expression</td>
<td>Alizadeh, et al., 2013</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Seed biopriming</td>
<td>Pythium aphanidermatum</td>
<td>Cucumber</td>
<td>Phenyl Ammonia Lyase (PAL), PO and PPO</td>
<td>Devi and Shivprakash 2013</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Seed biopriming</td>
<td>Drought</td>
<td>Wheat</td>
<td>Osmotic potential, Phenolics, Proline, lipid peroxidation and PAL</td>
<td>Shukla et al., 2014</td>
</tr>
<tr>
<td>T. viridae</td>
<td>Seed biopriming</td>
<td>Fusarium oxysporium and Alternaria alternate</td>
<td>Pigeon pea, Moong bean</td>
<td>PO, PPO, PAL, Catalase, Total phenols and antioxidants.</td>
<td>Rao, et al., 2015</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Seed treatment</td>
<td>Phytophthora melonis</td>
<td>Cucumber</td>
<td>PAL, Lipoxygenase and Galactinol synthase and Cucumber pathogen induced 4 gene expression</td>
<td>Sabbagh et al., 2017</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Seed biopriming</td>
<td>Drought</td>
<td>Rice</td>
<td>Proline, SOD, lipid peroxidation and DHN/AQU transcript level</td>
<td>Pandey et al., 2016</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Soil and seedling treatment</td>
<td>Sclerotinia sclerotiarum</td>
<td>Oilseed rape</td>
<td>AOC3,PDF1,2 and ERF2 genes expression</td>
<td>Alkooranee et al., 2017</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Seed biopriming</td>
<td>Drought</td>
<td>Tomato</td>
<td>Flavonides, phenols, IAA, IBA, Gibberellin, Proline,</td>
<td>Mona et al., 2017</td>
</tr>
</tbody>
</table>
There are many more examples about effective application of competition for the biocontrol of pathogens such as *B. cinerea*, (Latorre *et al.*, 2001). These reports suggest that the molecular and proteomic assembly of *Trichoderma* is more efficient to mobilize and take soil nutrients as compared to many other pathogens and other organisms.

Trichoderma-pathogen networking

The seven transmembrane G protein coupled receptor Gpr1 is involved in sensing the fungal prey in nearby vicinity (Oman *et al.*, 2012). *Vel1* of *Trichoderma virens* is involved in hydrophobin expression for adherence to the host and mycoparasitism (Zeilinger *et al.*, 2005). Ligand binding with such receptors leads to downstream signaling events via activation of G-protein cascades. *Trichoderma* spp. have three MAPK cascades comprising MAPKKK, MAPKK and MAPK and MAPK signaling pathways may act in mycoparasitism and biocontrol (Reithner *et al.*, 2007, Kumar *et al.*, 2010). Production and release of Cell wall degrading enzymes (CWDEs) and antibiotics are the most important members of the chemical arsenals deployed by *Trichoderma* to kill pathogens. Glucan and Chitin synthases are produced by the *Trichoderma* to repair their self-cell wall damage by pathogen during *Trichoderma*-pathogen interaction.
Simultaneously genes encoding hydrolytic enzymes like chitinases and glucanases, and those for secondary metabolism like NRPSs path are expressed to kill the pathogens (Kubicek et al., 2011). Earlier evidences suggested the involvement of chit42, chit3, bgn13.1, Bgn2 Bgn3 and prb1 are involved in chitinases, glucanases and proteases in biocontrol (Mondizar et al., 2011). Certain species like T. atroviride produce the volatile metabolite 6-pentyl-2H-pyran-2-one (6-PP) which plays an important role in Trichoderma–fungal interactions (Hasan et al., 2008, Vinale et al., 2009). Recently, genetic evidence has been provided for the assembly of 11- and 14-modules peptaibols by a single NRPS Tex2 of T. virens (Mukherjee et al., 2011). Given the fact that these peptaibiotics are strongly antimicrobial (by being able to form voltage-gated membrane channels as peptaibol trichokonin VI of T. pseudokoningii are involved to induce programmed cell death in Fusarium oxysporum (Shi et al., 2012).

Trichoderma spp. possess many qualities and attributes, they have great potential use in agriculture such as plant growth development by improving germination, morphological features and physiological alteration by alleviating uptake of nutrients in plants, enhancing nitrogen-use efficiency in different crops, and assisting to improve photosynthetic efficiency. Several strategies have been applied to identify the main genes and compounds involved in this complex, three-way cross-talk between the fungal antagonist, the plant, and microbial pathogens. They also stimulate defence in response of biotic and abiotic stress and antagonism including mycoparasitism, antibiosis and competition against pathogens. Trichoderma elicits ISR by JA/ET-dependent pathways and triggers priming responses in the plant. On the other hand, the Trichoderma–plant interaction is dynamic and the expression of defence-related genes of the JA/ET and/or SA pathways may overlap, depending on the Trichoderma strains and their concentration, the plant material, the developmental stage of the plant, and the timing of the interaction.

Trichoderma also produces the phytohormones ET and IAA, which play roles in interconnecting plant development and defense responses. The genome of Trichoderma spp. has been extensively investigated and has proven to contain many useful genes, along with the ability to produce a great variety of expression patterns, which allows these fungi to adapt to many different environments (soil, water, dead tissues, inside the plants, etc.). The metabolomics of Trichoderma spp. are incredibly complex, especially in terms of antibiotics and secondary metabolites production but with the help of advanced genomic and proteomic approaches, it is possible to explore new pathways, novel functions of compounds produced by this genus. The expression of Trichoderma genes in plants has beneficial results, mainly in the control of plant diseases and resistance to adverse environmental conditions. The experimental evidence indicates that Trichoderma–plant interactions have features in common with other beneficial microbe associations but that they also display their own characteristics due to Trichoderma’s particular lifestyle. Nevertheless, there is a need for more studies aimed at gaining insight into the signalling transduction pathways, related to defense and development, resulting from Trichoderma–plant interactions in the presence of pathogens and/or different types of abiotic stress (Table 1–3 and Fig. 1).

Future prospects

Genetics of three way cross talk among Plant – Trichoderma –Pathogen interaction should be investigated including the process of induction and regulation of enzyme expression. Additionally, the environmental cues along with the transmission of the respective signal to the promoters of the output pathways should be considered. Such knowledge of the physiology will further improve enzyme production in the microbial cell factory and enhance the mycoparasitic potential of biocontrol strains.

The identification of the plant receptors for
Trichoderma elicitor proteins and effectors that may reprogram a host’s genetic machinery can serve as the foundation for understanding how these symbionts trigger the host defense reaction.

Trichoderma compatibility with chemical fungicides as the part of integrated disease management should be evaluated.

Needs to enhance popularity of Trichoderma based formulation among the farmers for ecofriendly management of diseases.

The ecological impact of large-scale applications of a single fungal species and their secondary metabolites for biocontrol should be evaluated to establish a knowledge base for the safe and sustainable use of Trichoderma.

Acknowledgement

The authors would like to express their gratitude to Council of Scientific and Industrial Research, New Delhi for their support.

References

Chowdappa, P., Kumar, S.P.M., Lakshmi, M.J., Upreti, K.K. (2013). Growth stimulation and

Journal of Recent Scientific Research Research, 6: 4270-4280.
Rosado, I.V., Rey, M., Codón, A.C., Govantes, J., Moreno-Mateos, M.A. (2007). QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genetics and Biology, 44: 950-964.
of rice intensification (sri) practices compared with recommended rice cultivation practices in India. Experimental Agriculture, 46: 77–98.

How to cite this article: