Clinico-Therapeutic Studies in Bovine Respiratory Disease Complex in Buffaloes

Praveen Kumar¹*, Ashok Kumar², Anup Yadav¹, Umed Singh Mehra¹, Rajendra Yadav³ and Pankaj Kumar⁴

¹Department of Animal Husbandry and Dairying, Govt. of Haryana, India
²Department of Veterinary Medicine, College of Veterinary Sciences, LUVAS, Hisar, India
³Regional Veterinary Diagnostic and Extension Centre, Mahendergarh (LUVAS, Hisar), India
⁴Disease Investigation Laboratory, Rohtak (LUVAS, Hisar), India

*Corresponding author

ABSTRACT

A study was carried out in 24 buffaloes affected with Bovine Respiratory Disease (BRD) Complex, which were diagnosed based on the history and clinical findings of inappetance to anorexia, fever, nasal discharge, coughing, dyspnoea and abnormal lung sounds on auscultation of thoracic area. The affected animals were randomly categorized in three groups for treatment to evaluate the therapeutic efficacy of ceftiofur, levofloxacin and moxifloxacin. Based on remission of clinical signs and symptoms ceftiofur was found to be most effective antibiotic for treatment of BRD complex in buffaloes.

KEYWORDS BRD Complex, Ceftiofur, Levofloxacin and Moxifloxacin

INTRODUCTION

Respiratory diseases had notified a major impact on the overall health of bovines and continue to be of great importance even today. Many of the diseases that have been shown to impact the respiratory tract of cattle and buffaloes are grouped into an overall category known as bovine respiratory disease (BRD) complex. This includes shipping fever syndrome, mucosal disease, enzootic calf pneumonia, acute respiratory distress syndrome, haemorrhagic syndrome and atypical interstitial pneumonia (Apley, 2006). Bovine respiratory disease is a result of the complex interaction of bacterial and viral agents, environmental conditions, management factors and the animal health (Nickell and White, 2010). It is a major health problem of respiratory system occurring worldwide in both dairy and feedlot cattle (Edwards, 2010), responsible for high morbidity and mortality and has been reported to cause heavy economic losses in terms of drug and veterinary costs, extra labour and production losses (Gagea et al., 2006). These agents often produce mild clinical to severe clinical signs and death within 24 to 36 hours or may cause permanent lung damage as fibrosis, adhesions and/or abscesses, in chronic cases, which will impact performance. That is why early recognition and treatment of
BRDC are so important (Kirchhoff et al., 2014). Viral and bacterial agents proliferate, become pathogenic and damage the respiratory tract during the progression of subsequent respiratory disease (Panciera, 2010). The clinical signs of BRD complex vary according to the animal status, the level of stress that animal experiences, management practices and quantum of pathogen challenge (Smith, 2009; Snowder, 2009). The present study was undertaken to investigate the various clinical findings observed in buffaloes affected with BRD complex and to evaluate the therapeutic efficacy of ceftiofur, levofloxacin and moxifloxacin.

Materials and Methods

The study was conducted on 24 clinical cases of BRD complex in buffaloes which were reported at Teaching Veterinary Clinical Complex (TVCC), Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar (Haryana). A complete case history of affected animals was obtained from the animal’s owners and handlers. Eight apparently healthy buffaloes were also included in this study as control group. Thorough clinical examination of the suspected animals was made which included auscultation of thoracic area, recording of rectal body temperature, status of nasal discharge and coughing, respiratory rate and pattern, and mucus membranes. Gender wise all the affected animals were female belongs to different parities (1st to 6th parity) and aged ranging from 4 – 10 years. Animals having history and clinical symptoms of inappetence to anorexia, fever, nasal discharge, coughing, dyspnoea and abnormal lung sounds on auscultation were diagnosed to be suffered from BRD complex and considered for this study. To compare the therapeutic efficacy of ceftiofur, levofloxacin and moxifloxacin these 24 buffaloes affected with BRD complex were randomly categorized into three groups (group – I, II and III) with eight animals in each group. Ceftiofur @ 2.2 mg/kg body weight (group – I), levofloxacin @ 4 mg/kg body weight (group – II) and moxifloxacin @ 5 mg/kg body weight (group – III) was administered by intramuscular route once daily for 3 – 7 days depending on remission of clinical signs and symptoms. In addition to this, supportive therapy in the form of antihistaminics, non-steroidal anti-inflammatory drugs (NSAID), respiratory stimulants, liver extract, multivitamins and corticosteroids was given in recommended doses where warranted. Therapeutic efficacy of these three antibiotics was evaluated based on the remission of clinical signs and symptoms of BRD complex in affected animals and regaining of normal appetite during the course of treatment of 3 – 7 days.

Results and Discussion

Typically, diagnosis of BRD complex is based on a combination of objective (rectal body temperature, body weight) and subjective (depression, abnormal appetite and respiratory signs) assessments of affected animals, which is also concluded by many other researchers (Apley, 2006; Step et al., 2008; Patel et al., 2017; Arslan and Ozcan, 2018). Severity of clinical signs of BRD complex varies from unapparent to per-acute death as reported by Confer (2009) and Griffin et al., (2010). When clinical signs are observed, they are usually evident between 7 to 10 days after the stressful situation; however, in newly acquired buffalo, clinical signs can be present as late as 27 days after acquirement. This kind of findings was also observed in cattle by Zecchinon et al., (2005) and Griffin et al., (2010). During the course of this study the following clinical observations were made i.e. rectal body temperature, status of appetite (inappetence/anorexia), coughing, nasal discharge, dyspnoea and auscultation of thoracic area for abnormal lung sounds in all
The status of anorexia/inappetence was recorded on day 0 and post treatment days and has been presented in table 1. Control group animals were of normal appetite on day 0 while the animals of all the three groups affected with BRD complex were anorectic on the day of observation. In the ceftiofur treated animals, on day 3, three out of eight animals were anorectic and no animal was anorectic on day 5 of treatment. In levofloxacin treated group, all the animals were anorectic on day 3 while three out of eight animals were anorectic on day 5 and no animal was anorectic on day 7 of treatment. All the eight animals were anorectic in moxifloxacin treated group. On the day of observation (day 0) all the 24 affected buffaloes showing the clinical abnormalities in the form of coughing, nasal discharge, dyspnoea or abnormal auscultation findings in the thoracic area (Table 1). In the animals of groups treated with ceftiofur and levofloxacin it takes 5 and 7 days to get rid of these abnormal clinical findings, respectively. In the moxifloxacin treated group two out of eight animals were still showing the signs of coughing, nasal discharge, dyspnoea and abnormal auscultation findings even on day 7 of the treatment. In the present study, affected animals were showing high rectal temperature, anorexia/inappetence, coughing which varied in its duration, watery to serous type of nasal discharge and abnormal lung sounds such as crackles, wheezes, pleuritic frictional rubs etc. during the course of investigation. Similar types of findings were consistently observed by various other researchers (Zecchinon et al., 2005; Confer, 2009; Griffin et al., 2010; Ozkanlar et al., 2012; Urban – Chmiel and Grooms, 2012; Scott, 2013; Love et al., 2014) during their studies on respiratory tract diseases in animals. Depending on the severity of anorexia, animals can experience slight to severe weight loss. Similar findings were also observed by Zecchinon et al., (2005). The clinical expression of BRD complex varies according to the animal, the level of stress that animal experiences, management practices prior to and after the marketing process and level of pathogen challenge as also observed similarly by Snowder et al., 2006; Sanderson, 2008; Smith, 2009 and Snowder, 2009. Some scientists developed scoring systems based on the severity and duration of clinical signs and symptoms of BRD Complex (Perino and Apley, 1998 and Love et al., 2016) but these scoring systems had not found much importance in Indian scenario due to lack of well-organized farming practices as well as variable environmental and stress causing conditions.
Table 1 Clinical status of control and BRD complex affected buffaloes before and after treatment (n = 8 in each group)

<table>
<thead>
<tr>
<th>Group</th>
<th>Clinical Signs and Symptoms</th>
<th>Rectal Body Temperature (ºF) (Mean±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inappetence/Anorexia</td>
<td>Coughing</td>
</tr>
<tr>
<td>Control Group</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ceftiofur Treated Group (Group – I)</td>
<td>8(+++)</td>
<td>8(+++)</td>
</tr>
<tr>
<td>Day 0</td>
<td>3(+)</td>
<td>3(+)</td>
</tr>
<tr>
<td>Day 3</td>
<td>0(-)</td>
<td>0(-)</td>
</tr>
<tr>
<td>Day 5</td>
<td>0(-)</td>
<td>0(-)</td>
</tr>
<tr>
<td>Day 7</td>
<td>0(-)</td>
<td>0(-)</td>
</tr>
<tr>
<td>Levofloxacin Treated Group (Group – II)</td>
<td>8(+++)</td>
<td>8(+++)</td>
</tr>
<tr>
<td>Day 0</td>
<td>8(+++)</td>
<td>6(++)</td>
</tr>
<tr>
<td>Day 3</td>
<td>3(++)</td>
<td>1(+)</td>
</tr>
<tr>
<td>Day 5</td>
<td>0(-)</td>
<td>0(-)</td>
</tr>
<tr>
<td>Day 7</td>
<td>2(+)</td>
<td>1(+)</td>
</tr>
<tr>
<td>Moxifloxacin Treated Group (Group – III)</td>
<td>8(+++)</td>
<td>8(+++)</td>
</tr>
<tr>
<td>Day 0</td>
<td>8(+++)</td>
<td>8(+++)</td>
</tr>
<tr>
<td>Day 3</td>
<td>6(+++)</td>
<td>4(++)</td>
</tr>
<tr>
<td>Day 5</td>
<td>2(+)</td>
<td>1(+)</td>
</tr>
</tbody>
</table>

+ Mild, ++ Moderate, +++ Severe, - Absent

The therapeutic regimen used in the present study comprised of three different antibiotics along with supportive measures, at times determined by clinical observations. Ceftiofur is a broad spectrum third-generation cephalosporin developed for the treatment of bovine respiratory disease (BRD) (Yancey et al., 1987) has demonstrated high in vitro activity against both Gram-positive and Gram-negative bacteria including bacterial pathogens associated with respiratory diseases (Hornish and Katarski, 2002). Levofloxacin is a second generation fluoroquinolone possesses excellent activity against Gram-positive, Gram negative and anaerobic bacteria (North et al., 1998). Moxifloxacin is a novel fourth generation fluoroquinolone with a broad spectrum antibacterial activity against Gram-positive, Gram-negative bacteria and anaerobes (Kowalski et al., 2003), and its lower MIC values and high serum and tissue concentration makes it a suitable antimicrobial for treating various infectious diseases including those of upper and lower respiratory tract (Blondeau and Hansen, 2001). In the present study, ceftiofur showed recovery in affected buffaloes in 3 days as evidenced by remission of clinical signs and symptoms while it was recorded in 5 days and 7 days after treatment with levofloxacin and moxifloxacin, respectively. Ceftiofur has also been previously used with god efficacy for the treatment of BRD complex by many researchers (Jim et al., 1992; Lockwood et al., 2003; Abutarbush et al., 2012 and Stegner et al., 2013). On the basis of remission clinical signs and symptoms (Inappetence/anorexia, coughing, nasal discharge, dyspnoea, abnormal auscultation findings and rectal body temperature), ceftiofur was found to be most effective antimicrobial for the treatment of BRD
complex in buffaloes followed by levofloxacin and moxifloxacin.

In conclusion, BRD complex in buffaloes is still an important disease and will be a serious problem for the dairy industry in India for some more time because of its complex etiological structure and variability in therapeutic efficacy of various treatment regimens. Increasing antibiotic resistance to the pathogens is one of the negative parts of the situation; therefore treatment alternatives are getting decrease while treatment cost is increasing. In this frame, prevention and early diagnose of BRD based on clinical signs and symptoms have more importance for future of the dairy industry worldwide.

References

How to cite this article: