Isolation of *Trichoderma harzianum* and Evaluation of Antagonistic Potential against *Alternaria alternata*

K.V.M.S. Chaitanya*, Harison Masih and Pakkala Abhiram

Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, SHUATS, India

*Corresponding author

Abstract

Chilli is one of the important spices and cultivated around the world for its peculiar hot taste. Chilli leaves prone to affect by *Alternaria alternata* (leaf spot). In order to overcome this problem, efforts have been made to evaluate the efficiency of the bio-control agent *Trichoderma harzianum* for controlling the leaf spot disease in chilli. *Trichoderma harzianum* was isolated from the field soil and identified through microscopic and recommended standard methods. The antagonistic activity of the *Trichoderma harzianum* was evaluated against the pathogenic fungi responsible for leaf spot disease. *Alternaria alternata* belongs to the sub-division Deuteromycotina, class Dothideomycetes, family Pleosporaceae. The mycelium of *Alternari alternata* is septate, brown to brownish grey in colour. The conidiophores are dark, septate, arise in fascicles, measuring 14-74 × 4-8 μm. Conidia are brownish black, obclavate, borne singly or sparingly in chains of 2-4, muriform with long beak and the overall conidial size ranges between 148-184 × 17-24 μm with 10-11 transverse and *Alternaria alternata* proved the efficiency to inhibit. The antagonistic activity of *Trichoderma harzianum* was screened *in vitro* against *Alternaria alternata* by dual culture plate technique on PDA media for 7 days. The results revealed *Trichoderma harzianum* was shown inhibition of 60.71% over *Alternaria alternata*.

Keywords

Trichoderma harzianum, *Alternaria alternata*, Inhibition, Dual culture plate technique

Introduction

Chilli is one of the important spices and cultivated around the world for its peculiar hot taste. Chilli leaves prone to affect by *Alternaria alternata* (leaf spot). In order to overcome this problem, efforts have been made to evaluate the efficiency of the bio-control agent *Trichoderma harzianum* for controlling the leaf spot disease in chilli. *Trichoderma harzianum* was isolated from the field soil and identified through microscopic and recommended standard methods. The antagonistic activity of the *Trichoderma harzianum* was evaluated against the pathogenic fungi responsible for leaf spot disease *i.e.*, *Alternaria alternata* belongs to the sub-division Deuteromycotina, class Dothideomycetes, family Pleosporaceae. Species of the genus are cosmopolitan, surviving both as saprophytes as well as weak parasites. The genus is characterized by the formation of polymorphous conidia either singly or in short or longer chains and provided with cross, longitudinal as well as oblique septa and having longer or short beaks.
(Nayyar et al., 2014). Yellow-brown spots with target-like concentric rings appear on leaves, as well as dark brown sunken spots on heads of Brussels sprouts, broccoli, and cauliflower, chilli. These spots contain many spores which are spread by wind, rain, or on equipment and people. Spores require at least 9 hrs. of moisture to germinate and infect the plant. Older, senescing plant parts are more susceptible to infection (Wukasch et al., 1985).

The mycelium of Alternari alternata is septate, brown to brownish grey in colour. The conidiophores are dark, septate, arise in fascicles, measuring 14-74 × 4-8 μm. Conidia are brownish black, obclavate, borne singly or sparingly in chains of 2-4, muriform with long beak and the overall conidial size ranges between 148-184 × 17-24 μm with 10-11 transverse and Alternaria alternata proved the efficiency to inhibit (Subash et al., 2014).

The use of various herbal extracts and natural products is being encouraged because these cause no health hazard or pollution. The extracts of Canna indica, Convolvulus arvensis, Ipomoea palmata, Cenchrus catharticus, Mentha piperita, Prosopsis spicigera, Allium cepa, Allium sativum, Lawsonia inermis, Argemone mexicana, Datura stramonium and Cleroden dronermer completely inhibited the spore germination of Alternaria brassicae, Alternaria altenata was isolated from leaves of cauliflower and chilli (Sheikh and Agnihotri, 1972).

The maximum residue limit (MRL) applied by legislation and buyers in the food industry is also increasingly strict, there is the risk of plant pathogens developing resistance to chemical control products. Biological control is therefore a useful and necessary part of growers’ crop protection programmers. Biological control is based upon the natural enemies of harmful organisms, usually bacteria or fungi. These natural enemies are multiplied by manufacturers and sold as ready-to- use control products. Growers can use biological control to replace (part of) their chemical control.

Several fungicides and botanicals belonging to various groups are recommended for the management of Alternaria leaf spot of chilli. Now-a-days farmers are using only the chemical fungicides for managing the disease, but it has the negative impact on the environment and develops resistant in pathogen. So due to these reasons use of specific chemical fungicides with recommended dosages bio-agent will not harm the environment and also will be effective in controlling the disease. So the studies are conducted to know the efficiency of fungicides, bio-agent in managing the Alternaria leaf spot of chilli caused by the Alternaria alternata.

Materials and Methods

Isolation of Trichoderma harzianum from Agriculture soil

The soil was collected from the Agriculture field and serially diluted till 10⁵ dilutions separately and transfer 0.1ml of each dilution was placed on PDA media separately using spread plate technique. The plates were incubated at 25ºC for 4 to 5 days and then analysis of morphological study (Aneja et al., 2003) was carried out.

Lacto Phenol Cotton Blue staining of Trichoderma harzianum

The lacto phenol cotton blue (LPCB) wet mount preparation is the most widely used method of staining and observing fungi. The preparation has three components, phenol, which was killed any live organisms, lactic acid which preserves fungal structures, and
cotton blue which stains the chitin in the fungal cell walls. Place a drop of 70% alcohol on a separate microscope slides and immerse the fungal specimens in the drop of alcohol and add one or two drops of the lacto phenol/cotton blue stain before the alcohol dries out. Holding the cover slip between forefinger and thumb, touch one edge of the drop of mountant with the cover slip edge, and lower gently, avoiding air bubbles and observe under microscope (Aneja et al., 2003).

Characterization of *Trichoderma harzianum*

The thallus typically consists of a highly branched network of multi-nucleate. Many-branched conidiophores sprout on the mycelia. The conidiophores are the main dispersal route of the fungi, and often are green in color identified as *Trichoderma harzianum*.

Biochemical tests

Amylase production test

The isolate strains were inoculated into starch agar plates. All the inoculated as well as uninoculated (control) plates were incubated at 25ºC for 7 days. After incubation period, surface of the plates with iodine solution with a dropper for 30 seconds and pour off the excess iodine solution. A typical positive starch hydrolysis reaction (*i.e.*, clear zone surrounding the microbial colonies) shown by the *Trichoderma harzianum* (Azevedo et al., 2000).

Cellulase production test

The isolate strains were inoculated into Czapek-mineral salt medium plates. All the inoculated as well as un-inoculate (control) plates were incubated at 25ºC for 7 days. After incubation period, surface of the plates with Hexadecyltrimethyl ammonium bromide (1% solution) with a dropper for 30 seconds and pour off the excess Hexadecyltrimethyl ammonium bromide solution. A typical positive cellulase production test (*i.e.*, clear zone surrounding the microbial colonies) shown by the *Trichoderma harzianum* (Gajera and Vakharia 2012).

Isolation and identification of *Alternaria alternata*

Sample collection

Soil samples from the chilli rhizosphere infested with *Alternaria alternata* was collected from 3 places of the field and mix well to make fine particles. Collection of soil samples were taken from the root zone at 5-15 cm depth.

Morphological characteristics of *Alternaria alternata*

The mycelium of *Alternaria alternata* is septate, brown to brownish grey in colour. The conidiophores are dark, septate, arise in fascicles. Conidia are brownish black, obclavate, borne singly or sparingly in chains with long beak.

This species represent slow and rudimentary growth in media and forms chlamydospores in less frequency (Kolte, 1985).

Antagonistic activity of *Trichoderma harzianum* against *Alternaria alternata* under in-vitro

Trichoderma harzianum was evaluated for its antagonistic activity against the *Alternaria alternata*. In Petri dishes containing PDA medium, inoculate *Trichoderma harzianum* and *Alternaria alternata* at 28ºc for 7 days. *Trichoderma harzianum* was inhibiting the growth of the pathogen. The bio-control agent, *Trichoderma harzianum* colonize over the pathogen (Kumar et al., 2011).
Inhibition growth percentage (%) = \[\frac{R_1 - R_2}{R_1} \times 100 \]

Where,

\(R_1 \) = Growth of *Trichoderma harzianum* in petridish (mm).

\(R_2 \) = Growth of *Alternaria alternata* in petridish (mm).

Results and Discussion

Isolation and biochemical tests of *Trichoderma harzianum*

In the present study *Trichoderma harzianum* was isolated by serial dilution method from the soil sample collected from the Agricultural field of SHIATS, Allahabad. In PDA medium individual colonies of filamentous fungi were picked up and purified by streaking on Agar medium and incubate at 25ºC at 5-7 days. The fungal isolates were identified on the basis of macroscopic analysis in PDA medium. The fungal cultures were all incubated followed the recommendations of Pitt *et al.*, (1979). The fungal isolates have on PDA the conidiophores are the main dispersal route of the fungi, and often are green in colour identified. The biochemical tests (Amylase Production test, Cellulose Production test) used to identify the *Trichoderma harzianum*.

Biochemical tests

Isolation and morphological characteristics of *Alternaria alternata*

Soil samples from the chilli rhizosphere infested with *Alternaria alternata* was collected from 3 places of the field and mixed well to make fine particles. Collection of soil samples was taken from the root zone at 5-15 cm depth. The mycelium of *Alternaria alternata* is septate, brown to brownish grey in colour. The conidiophores are dark, septate, arise in fascicles, measuring 14-74 × 4-8 μm.

Conidia are brownish black, obclavate, borne singly or sparingly in chains of 2-4, muriform with long beak and the overall conidial size ranges between 148-184 × 17-24 μm with 10-11 transverse and 0-6 longitudinal septa. This species represent slow and rudimentary growth in media and forms chlamydospores in less frequency.

Table.1 Cultural characteristics of *Trichoderma harzianum*

<table>
<thead>
<tr>
<th>Organism</th>
<th>Media</th>
<th>Cultural characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma harzianum</td>
<td>PDA</td>
<td>Color: Greenish white lower side cream, Texture: floccose, Hyphae: Vegetative aerial hyphehyline or trichotomously branched</td>
</tr>
</tbody>
</table>

Table.2 Morphological characteristics of *Trichoderma harzianum*

<table>
<thead>
<tr>
<th>Organism</th>
<th>Morphological characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma harzianum</td>
<td>Spore: Type: Conidia, Shape: Spores are spherical or oval, Septation: Septate, Arrangement: Spores scattered or clusters</td>
</tr>
</tbody>
</table>
Table 3: Biochemical test of *Trichoderma harzianum*

<table>
<thead>
<tr>
<th>Biochemical identification</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase production test</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>Cellulase production test</td>
<td>√</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 4: Cultural characteristics of *Alternaria alternate*

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Media</th>
<th>Cultural characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Texture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyphae</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>PDA</td>
<td>Light olive green to brown</td>
</tr>
</tbody>
</table>

Table 5: Morphological characteristics of *Alternaria alternate*

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Morphological characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spore</td>
</tr>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>Chlamydospores</td>
</tr>
</tbody>
</table>

Table 6: Antagonistic activity of *Trichoderma harzianum* against *Alternaria alternata* under *in-vitro*

<table>
<thead>
<tr>
<th>Media</th>
<th>Growth of Trichoderma harzianum</th>
<th>Growth of Alternaria alternata</th>
<th>Inhibition growth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato Dextrose Aar</td>
<td>28 (mm)</td>
<td>11 (mm)</td>
<td>60.71 %</td>
</tr>
</tbody>
</table>

Plate 1: Cultural characteristics of *Trichoderma harzianum*
Plate 2 Morphological characteristics of *Trichoderma harzianum* (40X)

Plate 3 Amylase production test

Plate 4 Cellulase production test
Plate.5 Cultural characteristics of *Alternaria alternata*

Plate.6 Morphological characteristics of *Alternaria alternata* (40X)

Plate.7 Antagonistic activity of *Trichoderma harzianum* against *Alternaria alternata* under in-vitro
Antagonistic activity of *Trichoderma harzianum* against *Alternaria alternata* under *in-vitro*

The antagonistic activity of *Trichoderma harzianum* was screened *in vitro* against *Alternaria alternata* by dual culture plate technique on PDA media for 7 days. The results revealed *Trichoderma harzianum* was shown inhibition of 60.71% over *Alternaria alternata*. Where growth of *Trichoderma harzianum* and *Alternaria alternata* were 28 mm, 11 mm respectively. Similarly, Bardia and Rai (2007) showed antagonistic effect of *Trichoderma viride* and *Trichoderma harzianum* against *Fusarium oxysporum* f. sp. *cuminis* by 51.15% and 58.41% inhibition of mycelial growth respectively. Rehman et al., (2010) showed efficacy of *Trichoderma viride* and *Trichoderma harzianum* against *Fusarium oxysporum* f. sp. *Ciceris* by inhibition of mycelial growth 81% and 83.33% respectively. Cherkupally et al., (2017) evaluated the efficacy of *Trichoderma viride* and *Trichoderma harzianum* against *Fusarium oxysporum* f. sp. *Melongenae* by inhibition of mycelial growth 78.88% and 81.11% respectively.

The use of chemical fungicides to control plant diseases caused by pathogenic fungi which constrain the yield. However, overuse of these synthetic chemicals causes hazardous to both environment and health the alternative method for replacement of chemical fungicides has led to the use of biological control agents. Microorganisms that grow in the rhizosphere are ideal for use as biocontrol agents. The studies proved that *Trichoderma harzianum* have the potential to control *Alternaria alternata* under *in vitro* to the extent of 60.71% by dual culture plate technique. It may be therefore a promising ecofriendly bio controlling sources and cost effective for the safe agricultural practices as well as to farmers.

Acknowledgement

KVMS Chaitanya is thankful to the Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, SHUATS to providing lab facilities.

References

How to cite this article: