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Introduction 
 

Paclobutrazol, [(2RS,3RS)-1-(4-chlorophenyl) 

- 4,4-dimethyl-2-(1,2,4-triazol- 1-yl)-pentan-

3-ol] is an important triazole based plant 

growth retardant well known for its 

characteristic activity to reduce plant growth 

by influencing internodal length, and increase 

flowering many perennial fruit trees including 

mango (Kishore et al., 2015). Such responses 
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A study was conducted to investigate the effects of paclobutrazol (PBZ) (1.25 g a.i m
-1

) on 

the contents of non-enzymatic antioxidants, ascorbic acid, glutathione (GSH) and phenols 

and activities of antioxidant enzymes, peroxidase, catalase, superoxide dismutase and 

ascorbate peroxidase in buds and leaves of growing shoots of mango cv. Totapuri at four 

distinct phenological stages numerically represented as 510 (initiation of bud swelling), 

511 (Swollen buds, 513 (bud burst) and 515 (panicle emergence) as per BBCH scale. The 

paclobutrazol treatment increased in non-enzymatic antioxidants, ascorbic acid (5.04-

87.61%), total phenol (5.74-65.65%) and GSH (5.08-38.7%) contents buds and leaves and 

activities enzymatic antioxidants, peroxidase (33.0-266.9%), SOD (44.3-198.0%), catalase 

(68.0-301.6%), and ascorbate peroxidase (22.8-99.0%) in buds at various phenological 

stages. The paclobutrazol induced increase in ascorbic acid and GSH was high at 511 and 

in total phenols at 513 stages in the developing buds. With respect to bud growth stages, 

activities of enzymatic antioxidants, peroxidase and ascorbate peroxidase were high at 511 

stage and the SOD activity at 510 stage under paclobutrazol treatment. The catalase 

activity witnessing consistently increasing trends in developing buds was high at panicle 

emergence (515 stage). There was broad similarity in the trends of non-enzymatic and 

enzymatic antioxidants antioxidant contents in the developing buds of paclobutrazol 

untreated and treated trees. From the results, it was apparent that the mango flowering 

coincides with increase in non-enzymatic and enzymatic antioxidants, and a high 

antioxidant status induced by paclobutrazol is responsible for its floral responses. 
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of paclobutrazol are attributed as the 

consequences of blocking of the oxidative 

steps with high specificity leading from ent-

kaurene to ent-kaurenoic acid by inhibiting 

kaurene oxidase activity in the gibberellin 

biosynthesis pathway (Fletcher et al., 2000). 

The growth inhibitory action of paclobutrazol 

is also supported from the reversal of growth 

inhibitory responses of paclobutrazol by 

gibberellin treatment (Yadav et al., 2005). 

Mango (Mangifera indica L.) is one of the 

important widely cultivated fruit crops of 

India. However, its production is beset with 

the problems of biennial bearing, poor fruit 

set, early fruit drop etc. Use of paclobutrazol 

is widely recommended practice for increasing 

flowering and better harvest in mango 

(Kishore et al., 2015). The beneficial effects 

of paclobutrazol have been reported as the 

outcome of modifications in physiological and 

biochemical processes (Abdel Rahim et al., 

2011; Upreti et al., 2013). Upreti et al., (2013) 

reported decrease in gibberellins concomitant 

with increase in leaf water potential, ABA and 

cytokinins associated with increased and early 

flowering in mango. In another study, Upreti 

et al., (2014) reported increase in 

carbohydrates as the result of upregulation in 

certain carbohydrate metabolizing enzymes by 

paclobutrazol responsible to floral bud 

initiation in mango. Further, polyamines - 

ethylene balance has been reported by Bindu 

et al., (2017) crucial for floral bud growth in 

mango, with high polyamines and reduced 

ethylene under paclobutrazol contributory to 

increased flowering.  

 

Reactive oxygen species (ROS) have been 

documented to have diversity of roles in the 

growth and development of plants besides 

imparting of tolerance to abiotic and biotic 

stress (Das and Roychoudhary, 2014; Ahmad 

et al., 2010). Several studies have indicated 

that controlled production of ROS is vital for 

cell differentiation and expansion during the 

morphogenesis of organs (Zinta et al., 2016). 

However an imbalance in ROS production has 

been shown to negatively influence plant 

growth and development as these may impair 

cellular metabolism because of their strong 

tendency to react with cellular biochemical 

constituents. The plants are reported to be 

equipped with antioxidant system through the 

production of antioxidant compounds like 

ascorbic acid, glutathione, tocopherol, 

phenolic acid, carotenoids etc and also 

antioxidant enzymes like peroxidase, catalase, 

superoxide dismutase (SOD), ascorbate 

peroxidase, glutathione peroxidase etc to 

scavenge the ROS, and prevent the possible 

oxidative damage caused by reactions 

catalysed by free radicles. (Ahmad et al., 

2010). There are good number evidences of 

involvement of oxidative enzymes with floral 

abscission and senescence in number of crops 

(Stead and van Doorn, 1994) and stress 

tolerance (Das and Roychoudhary, 2014) in 

plants. Limited studies have been undertaken 

on the involvement of antioxidant system in 

floral bud differentiation and floral growth 

initiation. In one of the studies (Salem et al., 

2011) reported significant variations in 

antioxidant properties in different floral 

development stages of Carthamus tinctorius, 

and the highest antioxidant activity was 

obtained at full flowering. In the present 

investigation, we studied the effects of 

paclobutrazol on some non-enzymatic and 

enzymatic antioxidant compounds at different 

phenological stages of floral bud growth in 

mango cv. Totapuri with a view to delineate 

their role in paclobutrazol induced flowering. 

 

Materials and Methods 

 

The studies were conducted on 18 years old 

grafted trees of a regular bearing mango cv. 

Totapuri grown at 10x10 m spacing during the 

years 2014 - 2015 at the experimental farm of 

ICAR - Indian Institute of Horticultural 

Research, Hessaraghatta, Bengaluru. The 

average canopy diameter of the trees was 
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around 8.0 m. During experimental period, the 

monthly average maximum and minimum 

temperatures ranged between 20.2 and 28.1°C 

and average relative humidity was 63.2% at 

1400 h. Recommended package of practices 

were adopted for the day-to-day orchard 

maintenance. Single recommended dose of 

paclobutrazol (Zeneca Limited, Surry, UK, 25 

% w/v) at 1.25 g a.i. per m canopy diameter 

was applied as soil drenching treatment to 

mango trees by spreading its aqueous solution 

(4.0 litres) uniformly in a circular band (25 cm 

wide) around the tree at 1.0 m radial distance 

from the base of tree trunk during 3rd week of 

August. The untreated trees (control) were 

irrigated by similar volume of water. Four 

trees were kept under paclobutrazol treatment 

while another four trees served as control. The 

experiment was conducted using RBD.  

 

The terminal shoots measuring about 20 cm 

length from current year growth were labelled 

in different directions in the treated and 

control trees immediate after paclobutrazol 

treatment. Sampling for apical buds and leaves 

was carried out at periodic intervals from 3
rd

 

week of September for free non-enzymatic 

antioxidants and enzymatic antioxidants at 

four phenological stages of floral bud growth 

characterized as 510 (initiation of bud 

swelling), 511 (swollen buds), 51 3 (bud 

burst) and 515 (panicle emergence) as per the 

pheno - phase guide chart suggested by Rajan 

et al., (2011). The sampled buds and leaves 

under were immediately frozen in liquid 

nitrogen and then stored in a-70º C freezer for 

the analysis. 

 

Ascorbic acid 

 

2 g of buds and leaf samples were 

homogenised with 4% oxalic acid solution, 

squeezed through a muslin cloth and volume 

was made upto 50ml. A 10ml of aliquot from 

this was pipetted out and titrated against 

standard 2,6-D diclorophenol indophenol 

(DCPIP) dye solution. The ascorbic acid was 

calculated from the volume of DCIP solution 

used according to Ruck (1963) and values 

were expressed at mg/g. 

 

Total phenols 

 

Total phenol content was determined by the 

Folin–Ciocalteu method of Bray and Thorpe 

(1954). A 500 μl of sample extract 

(12 mg/mL) was diluted to 1.0 mL with 

distilled water and mixed thoroughly with 

0.5 mL of Folin–Ciocalteu reagent for 2 min. 

After addition of 1.0 mL of 20% (w/v) sodium 

carbonate, the mixture was allowed to stand 

for 30 min in the dark, and absorbance was 

measured at 700 nm. The total phenols content 

was calculated using gallic acid as standard 

and results were expressed as mg (gallic acid) 

per g. 

 

Reduced glutathione 

 

The method of Moron et al., (1979) was 

adopted to determine the amount of reduced 

glutathione (GSH) content in buds and leaves. 

1.0 g of sample macerated with 5.0 ml 5% 

TCA and contents centrifuged at 10,000 rpm 

for 10 min at 4 ºC and the supernatant was 

separated out. To 0.2 ml of supernatant, 1.0 ml 

of 50 mM phosphate buffer (pH 6.8) followed 

by 2.0 ml of freshly prepared DTNB 

(Ellman’s reagent) solution was added and the 

absorbance of yellow colour formed was 

recorded at 412 nm after 10 min. The GSH 

content was expressed as mg GSH/g.  

 

Catalase activity 

 

The catalase activity was assessed by 

measuring the absorbance at 240 nm upto 3 

min at 30 s time interval using procedure 

described by Masia (1988). Three millilitres 

assay reaction mixture contained 0.067 M 

phosphate buffer (pH 7.0), 0.2ml H2O2 and 

0.2ml enzyme extract. The catalase activity 
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was calculated taking unit activity as the 

amount of enzyme decomposing 1.0 mmol of 

H2O2 per min and expressed as units/min/mg 

protein. 

 

Peroxidase activity 

 

The Peroxidase activity was determined 

spectrophotometrically according to the 

procedure of Malik and Singh (1980). The 

reaction mixture in a 5.0 ml final volume 

contained 100 mM phosphate buffer (pH 7.0), 

0.1 N pyrogallol, 0.02% H2O2 and 2.0 ml of 

enzyme extract. The oxidation of progallol to 

purpurogallin was measured at 434 nm and the 

enzyme activity was expressed as 

units/min/mg protein. 

 

Superoxide dismutase (SOD) activity 

 

SOD activity was assayed by monitoring the 

inhibition of photochemical reduction of nitro 

blue tetrazolium (NBT) according to 

Giannopolitis and Ries (1977) with some 

modifications. The reaction mixture (3.0 ml) 

containing 50 mM Na-PO4 buffer (pH 7.8), 1 

mmol EDTA, 149 g/mol L. methionine, 

1mmol NBT, 0.2 mmol riboflavin and 40µl 

(200 mg/ml) enzyme extract was illuminated 

for 10-12 min using 40 W fluorescent bulb. A 

control tubes contained components the same 

as described above, except that of crude 

enzyme replaced by an equal volume of 

phosphate buffer (pH 7.8). One unit of SOD 

activity was defined as the amount of enzyme 

required to cause 50% inhibition of the 

reduction of NBT as monitored at 560 nm and 

the enzyme activity was expressed as 

units/min/mg protein. 

 

Ascorbate peroxidase activity 
 

The ascorbate peroxidase activity was 

estimated employing the procedure described 

by Jiang and Huang (2001). The enzyme 

solution was prepared by grinding 1.0 g tissue 

in 5.0 ml of extraction buffer (0.05M 

phosphate buffer, pH 7.0, 8.0% glycerol, 1.0 

mM EDTA, and 1mM ascorbic acid). PVP 

(0.3 g/ g tissue) was also added during enzyme 

preparation for removing phenolics. The 

extract was centrifuged at 10000 rpm for 15 

min. The enzyme solution (5-20 µl) was added 

to a 3.0 ml reaction mixture of 50 mM 

phosphate buffer (pH 7.0), ascorbic acid (1 

mM), and H2O2 (0.3%), and the decrease in 

absorbance (2.9 mM
-1

cm
-1

) for the first 30 s of 

the reaction was used to calculate ascorbate 

peroxidase activity and the enzyme activity 

was expressed as unit enzyme/min/mg protein. 

 

Proteins 
 

The protein content was determined by the 

procedure of Lowry et al., (1951) using 

bovine serum albumin as standard. 

 

Statistical analysis 
 

Statistical analysis software (SAS) for all 

statistical analysis and the data was expressed 

as mean of replicates±SE.  

 

Results and Discussion 

 

Changes in non-enzymatic antioxidants 

 

In the paclobutrazol untreated trees, the 

ascorbic acid and GSH contents in buds and 

phenols content both in buds and leaves varied 

significantly at different phenological stages, 

and the ascorbic acid and GSH contents were 

high in buds while total phenols contents in 

leaves (Table 1). With respect to bud 

development stages, the ascorbic acid contents 

in the paclobutrazol untreated trees increased 

from 509 to 510 stage and total phenols upto 

511 stage in the buds and decline 

subsequently. In contrast, GSH content 

exhibited consistent increasing trends as buds 

approached panicle emergence stage (513 

stage) (Table 1). Following paclobutrazol 

treatment, the mango trees responded with 
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significant increase in ascorbic acid (5.04-

87.61%), total phenol (5.74-65.65%) and GSH 

(5.08-38.7%) contents in buds as well as in 

leaves at various phenological stages, and 

buds were more responsive than the leaves 

(Table 1). The paclobutrazol induced increase 

in ascorbic acid and GSH was high at 511 and 

in total phenols at 513 stages in the developing 

buds. Furthermore, there was broad similarity 

in the trends of non-enzymatic antioxidant 

contents in the developing buds of 

paclobutrazol untreated and treated trees. 
 

Changes in enzymatic antioxidants 
 

In the paclobutrazol untreated trees, 

peroxidase and catalase activities in 

developing buds high at 510 declined 

gradually by 513 stage, while ascorbate 

peroxidase activity exhibited contrasting 

trends. The leaves of untreated trees did not 

show distinct pattern in terms of changes in 

these enzymes with respect bud development 

stages (Table 2). In the paclobutrazol treated 

trees, distinct induction in the activities of 

peroxidase, SOD, catalase and ascorbate 

peroxidase was apparent at various bud 

growth stages. The paclobutrazol treatment in 

general showed distinct induction in 

peroxidase, SOD, catalase, and ascorbate 

peroxidase activities almost by 33.0-266.9%, 

44.3-198.0%, 68.0-301.6% and 22.8-99.0% 

respectively in buds as compared to untreated 

trees. However, in leaves changes in these 

enzymes by paclobutrazol were inconsistent at 

different phenological stages. With respect to 

bud growth stages, the peroxidase and 

ascorbate peroxidase activities in 

paclobutrazol treated trees were high at 511 

stage and the SOD activity at 510 stage. The 

catalase activity witnessing consistently 

increasing trends in developing buds was high 

at panicle emergence (513 stage) (Table 2). 
 

Non-enzymatic antioxidants such as ascorbic 

acid, GSH and phenolic acid are important 

low molecular weight non-enzymatic cellular 

detoxifying biochemical constituents involved 

in many physiological processes regulatory to 

reproductive development. While ascorbic 

acid is shown effective in influencing 

induction of flowering by modulating 

photosynthesis and biosynthesis of certain 

phytohormones (Barth et al., 2006), GSH 

involvement in flowering by possible 

modulations in cellular redox state to achieve 

minimal ROS levels (Ogawa 2001, 2005). 

Besides, GSH action is reported to be 

mediated indirectly by regenerating adequate 

quantities of ascorbic acid through GSH-

ascorbic cycle (Christine and Halliwell, 1976). 

Similarly, phenolic acids have been reported 

to play a role floral development through 

regulations in ROS production (Sood and 

Nagar 2003, Schmitzer et al., 2009). Thus 

high levels of such non-enzymatic 

antioxidants with during the initial stage of 

floral bud formation and increase in their 

content by paclobutrazol evident from the 

results reveals importance of these molecules 

floral growth in mango. Such increases may 

be consequences of inductions in enzymes 

involved in their biosynthesis or better 

availability of precursor linked to their 

biosynthesis.  
 

In support of our results, Vasudev and Gopal 

(1977) in Coffea arabicaand Dogra and Sinha 

(1979) in Phyllanthus simplex Retz reported 

high ascorbic acid content in their floral buds. 

Similarly, the paclobutrazol increasing 

ascorbic acid is also reported in citrus lemon 

juice (Jain et al., 2002) and GSH in Vigna 

unguiculata (Manivannan et al., 2008) and 

carrot (Gopi et al., 2007). Ahmad and Tahir 

(2016) reported increase in phenolic acid 

content in buds towards anthesis in Iris 

versicolor and Iris japonica plants suggesting 

a role of phenols in flowering. Mert et al., 

(2013) also reported involvement phenolic 

acid in flowering in Olea europaea L. Srilatha 

et al., (2016) reported increase in phenolic 

acid in mango following paclobutrazol 

application. 
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Table.1 Effects of paclobutrazol (PBZ) on the non-antioxidant contents in buds and leaves at various developmental stages of bud in 

mango cv. Totapuri (Data represent mean±SD of 4 replications) 

 

Numerical codes of bud developmental stages: 510 (bud swelling), 511 (swollen buds), 513 (bud burst) and 515 (panicle emergence) according to standard 

BBCH scale 

 

Table.2 Effects of paclobutrazol on the activities enzymatic antioxidants in buds and leaves at various developmental stages of bud in 

mango cv. Totapuri (Data represent mean±SD of 4 replications) 

 

Numerical codes of bud developmental stages: 510 (bud swelling), 511 (swollen buds), 513 (bud burst) and 515 (panicle emergence) according to standard 

BBCH scale 

 Non-

enzymatic 

antioxidants  

  

  

Buds Leaves 

509 510 511 513 509 510 511 513 

Ascorbic acid 

(mg/g)  

 -PBZ 45.6±3.12 53.8±4.78 33.1±4.21 28.1±3.15 13.9±1.19 9.9±0.86 10.3±1.22 10.8±0.09 

 +PBZ 61.4±4.03 75.4±6.92 62.1±3.63 40.7±3.45 14.6±1.62 13.8±1.13 11.5±1.04 12.9±1.16 

Total phenols 

(mg/g)  

 -PBZ 12.21±1.36 19.16±1.46 21.93±1.67 15.78±1.32 28.92±1.37 43.54±5.63 49.22±5.24 35.17±3.15 

 +PBZ 14.96±1.59 29.98±3.09 34.87±4.11 26.14±2.17 32.11±4.13 47. 58±6.32 45.59±2.93 33.15±2.32 

Glutathione 

(mg/g)  

 -PBZ 1.95±0.23 2.23±0.14 2.79±0.38 3.22±2.58 0.86±0.08 1.18 ±0.06 1.06±0.05 1.09±0.02 

 +PBZ 2.16±0.29 2.95±0.23 3.87±0.19 3.91±0.36 0.91±0.12 1.12 ±0.08 1.22±0.07 1.17±0.05 

 Enzymatic antioxidant 

activity 

  

  

Buds Leaves 

510 511 513 515 510 511 513 515 

Peroxidase 

(units/min/mg protein)  

 -PBZ 6.48±0.52 5.22±0.41 1.94±0.13 2.15±0.23 1.65±0.14 1.97±0.12 2.86±0.19 2.41±0.38 

 +PBZ 8.62±0.71 11.96±1.28 6.91±0.23 4.99±0.42 1.67±0.09 1.66±0.14 3.90±0.23 4.16 ±0.21 

SOD (units/min/mg 

protein) 

 -PBZ 8.12±0.91 11.13±1.05 18.11±1.52 20.12±2.17 3.13±0.21 5.86±0.63 3.36±0.34 3.06±0.14 

 +PBZ 19.98 ±2.31 33.15±3.08 36.64±3.79 29.00±2.15 4.06±0.46 7.89±0.61 4.01±0.49 3.82±0.19 

Catalase (units/min/mg 

protein) 

 -PBZ 0.741±0.09 0.59±0.06 0.31±0.04 0.26±0.06 0.29±0.05 0.21±0.01 0.18±0.02 0.15±0.01 

 +PBZ 1.25±0.22 2.05±0.14 1.15±1.04 1.03±0.08 0.35±0.06 0.30±0.02 0.35±0.07 0.26±0.06 

Ascorbate peroxidase 

(units/min/mg protein) 

 -PBZ 2.35±0.17 2.49±0.28 2.83±0.24 3.71±0.26 8.33±0.74 15.61±1.28 9.76±0.85 9.06±0.63 

 +PBZ 1.81±0.12 4.37±0.32 5.62±0.45 6.96±0.43 9.38±0.49 22.68±2.03 7.82±0.52 11.85±0.86 
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Thus increase in intracellular contents of 

ascorbic acid, GSH and phenolic acids as a 

consequence of altered cellular metabolic 

function is important attribute of 

paclobutrazol for floral bud formation in 

mango. 

 

Besides non-enzymatic antioxidants, the 

cellular defense system also consists of 

antioxidant enzymes such as peroxidase, 

catalase and ascorbate peroxidase that 

maintain the cellular redox status and help in 

protecting cell membrane integrity by 

inactivating ROS produced during 

metabolicchanges (Ahmad et al., 2010). 

While the peroxidases are class of 

oxidoreductase enzymes that catalyse the 

oxidation of compounds by decomposition of 

H2O2 or organic peroxides, the catalase helps 

in protecting cells from oxidative damage by 

catalyzing the decomposition of H2O2. 

Similarly, ascorbate peroxidase functions in 

theH2O2-detoxification system through 

ascorbate-glutathione cycle by utilizing 

ascorbic acid as electron donor. SOD on the 

other hand helps in catalyzing the dismutation 

of the superoxide (O2
−
) radical either into 

molecular oxygen (O2) or hydrogen H2O2. It 

is documented that onset of floral induction 

requires some stress factors. During phase 

transition from vegetative to reproductive, the 

cellular antioxidant status of plants tends to 

increases, suggesting that plants being 

exposed to stressful conditions for the onset 

of reproductive growth (Gielis et al., 1999, 

Wada and Takeno 2010). Thus increase in 

antioxidant enzymes activities during bud 

growth and their inductions by paclobutrazol 

indicates possible production of high levels of 

ROS during floral process due to high 

metabolic demand and/possible by stress 

factors, and their inactivation by inductions in 

such enzymes. The studies of Lokhande et al., 

(2003) further support our contention that 

production of ROS like H2O2 is important to 

flower induction. Wang and Faust (1994) and 

Wang et al., (1991) reported increase in SOD 

and catalase activities during initial bud 

development stages in apple. Gohari et al., 

(2015) suggested that antioxidant enzymes are 

one of the important biochemical factors for 

transition of vegetative growth to flowering. 

In support of increase in enzyme activities by 

paclobutrazol, Moradi et al., (2017) in 

pomegranate and Hu et al., (2017) in Chinese 

Bay berry reported increase in antioxidant 

enzymes by paclobutrazol under stress 

condition. Saxena et al., (2014) also 

implicated induction in certain antioxidant 

enzymes by paclobutrazol crucial for flower 

promotion in mango.  

 

From these findings, it is concluded that the 

mango flowering coincides with increase in 

non-enzymatic and enzymatic antioxidants, 

and strong antioxidant status by paclobutrazol 

in buds is responsible for its floral responses. 
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