

Original Research Article

<https://doi.org/10.20546/ijcmas.2018.701.185>

Relative Toxicity of Commonly Used Insecticides and Combination Products in Cotton Ecosystem to *Chrysoperla zastrowi sillemi* (Esben-Peterson) under Laboratory Condition

D.V. Bhojani, H.R. Desai*, C.U. Shinde and G.R. Bhandari

Biocontrol Laboratory, Department of Agricultural Entomology, Navsari Agricultural University, Navsari -396 450, Gujarat, India

**Corresponding author*

A B S T R A C T

The relative toxicity of ten insecticides and three ready to use combination products, used for cotton insect pest management were assessed against the green lace wing, *Chrysoperla zastrowi sillemi* (Esben-Peterson) in the laboratory, Department of Agricultural Entomology, N. M. College of Agriculture, Navsari Agricultural University, Navsari during 2014. Amongst tested insecticides, buprofezin 25 SC @ 0.05% and fipronil 5 SC @ 0.02% were categorized as slightly harmful; clothianidin 50 WP @ 0.005%, diafenthuron 50 WP @ 0.06%, imidacloprid 70 WG @ 0.005% and flonicamid 50 WDG @ 0.015% as moderately harmful and bifenthrin 10 EC @ 0.016%, lamda-cyhalothrin 5 EC @ 0.005%, methyl parathion 50 EC @ 0.1%, thiacloprid 21.7 SC @ 0.03%, chloropyriphos 50% + cypermethrin 5% EC @ 0.11, acephate 50% + imidachloprid 1.8% SP @ 0.103% and deltamethrin 1% + triazophos 35% EC @ 0.092% as harmful insecticides to the second instars larvae of *C. zastrowi sillemi* when assessed through thin film technique. While assessing relative toxicity through food contamination technique against the adults of *C. zastrowi sillemi*, buprofezin 25 SC @ 0.05% was categorized as harmless; bifenthrin 10 EC @ 0.016%, clothianidin 50 WP @ 0.005%, diafenthuron 50 WP @ 0.06%, fipronil 5 SC @ 0.02%, imidacloprid 70 WG @ 0.005%, flonicamid 50 WDG @ 0.015% and thiacloprid 21.7 SC @ 0.03% as slightly harmful; lamda-cyhalothrin 5 EC @ 0.005%, acephate 50% + imidachloprid 1.8% SP @ 0.103% and chloropyriphos 50% + cypermethrin 5% EC @ 0.11% as moderately harmful and methyl parathion 50 EC @ 0.1% and deltamethrin 1% + triazophos 35% EC @ 0.092% as harmful insecticides.

Keywords

Chrysoperla zastrowi sillemi (Esben-Peterson), Relative toxicity of insecticides

Article Info

Accepted: 12 December 2017
Available Online: 10 January 2018

Introduction

Cotton is still one of the chemical intensive crops and insect pest is the limiting factor for the successful cultivation of this crop. Change in pest dynamics has become more common in recent times owing to changing cropping systems and environment with the dominance

of Bt cotton across India. In the Bt era, cotton bollworms have drastically reduced while sucking pest have emerged as key and major pests. Their heavy infestation at times reduces the crop yield to a great extent. Due to growing environmental and economic concerns involved in the use of pesticides, the concept of IPM is an integral part for pest

management in any crop. Pesticides lead to many serious problems like pollution, health hazards, biodiversity threat, pest resurgence, pest resistance and secondary pest out-breaks in ecosystem (Bellows, 2001).

Biological control is an effective means of achieving insect control (Pedigo and Rice, 2000). In cotton ecosystem, the common green lacewing, *Chrysoperla carnea* (Stephens) has been recorded as an effective predator of sucking pests including aphids, thrips, mites (Burke and Martin, 1956; Yuksel and Gocmen, 1992; Balasubramani and Swamiappan, 1994; Zaki *et al.*, 1999) and has potential against cotton mealy bug (Sattar *et al.*, 2007; Tanwar *et al.*, 2007; Gautam *et al.*, 2010; Ram and Saini, 2010; Rashid *et al.*, 2012; Hameed *et al.*, 2013), especially under pesticides free environment. The green lacewing, *Chrysoperla zastrowi sillemi* (Esben-Peterson) in the field preferred to oviposit on cotton followed by okra and it laid eggs on stalks on lower surface of leaves for oviposition followed by stem (Chakraborty *et al.*, 2011).

The common green lacewing, *C. zastrowi sillemi* seems to be a good candidate in IPM programme, as it is a voracious feeder (Balasubramani and Swamiappan, 1994), display a relative broad range of acceptable preys (Hydrion and Whitecomb, 1979), easy to mass produced (Morrison, 1985 and El-Arnaouty, 1991) and is tolerant to some groups of pesticides (Hassan *et al.*, 1985; Bigler and Waldburger, 1994; Chen and Liu, 2002). The occurrence of *C. zastrowi sillemi* along with its prey insects in cotton ecosystem of Gujarat necessities to develop a sound pest management programme, the knowledge on the safety and adverse effect of pesticides to promising green lace wing is essential. So there is need to study relative toxicity of different insecticides used commonly in cotton ecosystem against larvae and adult stages of

C. zastrowi sillemi under laboratory condition to find out suitable insecticides less hazardous to predator.

Materials and Methods

Ten insecticides and three ready to use combination products were assessed for their relative susceptibility to larvae and adult stages of *C. zastrowi sillemi* in the laboratory, Department of Agricultural Entomology, N.M. College of Agriculture, Navsari Agriculture University, Navsari in December 2014.

Maintenance of *Chrysoperla* culture

The laboratory culture of *C. zastrowi sillemi* was obtained from *Chrysoperla* Rearing Unit, Bio-control Laboratory, Department of Agricultural Entomology, N.A.U., Navsari. The pupae of *C. zastrowi sillemi* were placed in glass vial separately for adult emergence. Freshly emerged adults were released in rectangular oviposition cage of size 50 × 30 × 17 cm (Length × Width × Height) covered with a black muslin cloth inside the lid of the cage to facilitate egg laying. Semi solid paste of artificial diet (composed of 4 g of each ingredients of honey, proteinex powder, glucose, fructose, yeast powder, milk powder in equal quantity of distilled water with dispersible vitamin E capsule along with castor pollens) were placed on cotton swab in small plastic container at inside of the bottom of the oviposition cage for nutrition of adults. Eggs laid by the female on the under surface of lid of the cage on black muslin cloth which were removed individually with the help of a soft sponge pad for removing the stalk of eggs and kept individually with the help of fine camel hair brush and placed in separate plastic vials (5 × 2.5 cm) for further rearing and to avoid cannibalism. A special care was also taken to avoid mechanical injury to the eggs during detaching it from the stalk. On hatching, the larval instar of *Chrysoperla* was

reared on laboratory host (eggs of rice grain moth, *Corcyra cephalonica* (Stainton) till pupae formation and again the eggs were collected as described above. The culture was maintained during the study period at an average room temperature of 24.03 ± 1.75 °C and relative humidity of 73.08 ± 2.86 per cent. Neonate larvae of *C. zastrowi sillemi* obtained through mass rearing as above were utilized for the study.

Assessment of relative toxicity to larvae and adults of *C. zastrowi sillemi*

Formulated products of ten insecticides viz., buprofezin 25 SC, diafenthiuron 50 WP, imidacloprid 70 WG, clothianidin 50 WDG, bifenthrin 10 EC, lamda-cyhalothrin 5 EC, methyl Parathion 50 EC, flonicamid 50 WG, thiacloprid 21.7 SC and fipronil 5 SC and three combination products viz., acephate 50 % + imidacloprid 1.8 SP, chlorpyriphos 50 % + cypermethrin 5% and deltamethrin 1%+ triazophos 35% EC along with control (water spray) were assessed to determine their relative toxicity against second instar larvae of *C. zastrowi sillemi*. The relative toxicity of insecticide was tested by using the thin film method (Anon., 1994). For preparing insecticide film, plastic vials (5x2.5 cm) were treated by dipping them in respective insecticide solutions, followed by drying under fan for 15 minutes. Twenty second instar larvae of *C. zastrowi sillemi* were released into the treated plastic vials in each treatment and were allowed to remain in contact with insecticide film for 45 minutes. Thereafter, larvae were transferred individually to fresh plastic vials (5x2.5 cm) containing *Corcyra* eggs that served as food. The observation on larval mortality was recorded at 12, 24, 48 and 72 hours after exposure to insecticide treatments. The moribund larvae were also considered as dead. The per cent corrected mortality was calculated by using Abbott's formula. Effect of insecticides was expressed as mortality of

second instar larvae. The data on per cent corrected mortality so obtained were subjected to statistical analysis adopting CRD design after arc-sine transformation.

The relative toxicity of above insecticides was also tested against adult (2-days old) stage of *C. zastrowi sillemi* with poison food technique as adopted by Rezaei *et al.*, (2006) and Sabry and EL-Sayed (2011) while studying the biosafety of *C. carnea* to pesticides. Twenty healthy adults of *C. zastrowi sillemi* were released in each glass jar (20 x 12 cm) covered with muslin cloth tied in position with rubber band for one repetition. These adults in all repetition were fed on 10 per cent sugar solution contaminated with tested concentration of insecticides under study. In the control treatment, the adults were fed only with 10 per cent sugar solution. All cages were incubated at room temperature and inspected after 24 hour and the number of adults died was recorded in each treatment and repetition. The corrected mortality of adults in each treatment was estimated as described above. The safety of tested insecticides was categorized as per the rating of IOBC/WPRS (Hassan, 1989).

Results and Discussion

Relative toxicity to larvae of *C. zastrowi sillemi*

The cumulative mortality of larvae of *C. zastrowi sillemi* recorded at 12, 24, 48 and 72 hours after exposure of larvae (2nd instar) as indicated that there was significant difference in mortality of larvae of *C. zastrowi sillemi* (second instar) in different insecticide treatments during different periods. At 12 hour after exposure, the lowest mortality was found in treatments of buprofezin 25 SC@ 0.05% and fipronil 5 SC @ 0.02% (0.00 %) and both the treatments were found significantly superior to rest of the treatments under study. The next group of effective insecticides were

imidachloprid 70 WG @ 0.005%, diafenthuaron 50 WP @ 0.06%, flonicamid 50 WDG @ 0.015%, clothianidin 50 WP @ 0.005%, lamda-cyhalothrin 5 EC @ 0.005%, deltamethrin 1% + triazophos 35% EC @ 0.092%, bifenthrin 10 EC @ 0.016 % and thiacloprid 21.7 SC @ 0.03 % registered 7.50 to 20.00 per cent mortality and were equally effective. Readymade combination product of acephate 50% + imidacloprid 1.8 % SP @ 0.103% recorded highest mortality (37.50 %) and was statistically at par with the treatments of methyl parathion 50 EC @ 0.1%, chlorpyrifos 50 % + cypermethrin 5 % EC @ 0.115 % and thiacloprid 21.7 SC @ 0.03 % (20 to 37.50 % mortality). Similarly at 24 hour after exposure, the lowest mortality was recorded in buprofezin 25 SC (15 %) and was statistically at par with fipronil 5 SC (22.50 % mortality). The later insecticide, on the other hand, was also remained statistically at par with imidacloprid 70 WG, clothianidin 50 WP, diafenthuaron 50 WP and flonicamid 50 WDG recording 42.50 to 47.50 per cent mortality. methyl parathion 50 EC recorded the highest mortality (cent per cent) and was found statistically at par with chlorpyrifos 50 % + cypermethrin 5 % EC (62.50 %).

At 48 hours after exposure, the lowest mortality (30 %) was found in fipronil 5 SC (30.00 %) followed by buprofezin 25 SC (42.50%) and both the insecticides were significantly superior to rest of the treatments. The highest mortality was found in methyl parathion 50 EC and chlorpyrifos 50 % + cypermethrin 5 % EC (cent per cent) and both insecticides were significantly inferior to rest of the treatments. The intermediate group of insecticides were flonicamid 50 WDG, imidacloprid 70 WG, lamda-cyhalothrin 5 EC, bifenthrin 10 EC, diafenthuron 50 WP, acephate 50% + imidacloprid 1.8 % SP and thiacloprid 21.7 SC (70.00 to 87.50 % mortality). At 72 hour after exposure, the lowest mortality was recorded in fipronil 5 SC

(60.00 %) which was statistically at par with buprofezin 50 WDG (65.00 %) and flonicamid 50 WDG (80.00 % mortality) and was significantly superior to rest of the treatments under study. The treatments of bifenthrin 10 EC, lamda-cyhalothrin 5 EC, methyl parathion 50 EC, chlorpyrifos 50% + cypermethrin 5% EC, acephate 50% + imidacloprid 1.8% SP, deltamethrin 1% + triazophos 35% EC and thiacloprid 21.7 SC recorded highest mortality (100.00 %). The insecticidal effect (% cumulative mortality after 72 hour) on larvae of *C. zastrowi sillemi* were also categorized and interpreted as per the recommendations of International Organization for Biological Control, West Palearctic Regional Section (IOBC/WPRS) working group suggested by Hassan (1989) when tested at field recommended dose.

Amongst tested insecticides, buprofezin 25 SC and fipronil 5 SC were categorized as slightly harmful; clothianidin 50 WP, diafenthuron 50 WP, imidacloprid 70 WG and flonicamid 50 WDG as moderately harmful and bifenthrin 10 EC, lamda-cyhalothrin 5 EC, methyl parathion 50 EC, thiacloprid 21.7 SC, chlorpyrifos 50% + cypermethrin 5% EC, acephate 50% + imidacloprid 1.8% SP and deltamethrin 1% + triazophos 35% EC as harmful insecticides against the larvae of *C. zastrowi sillemi*.

Relative toxicity to adults of *C. zastrowi sillemi*

The mortality of adults (2-days old) of *C. zastrowi sillemi* recorded at 24 hour after exposure (food contamination technique) indicated the lowest mortality of adult in buprofezin 25 SC (37.50 %) which was statistically at par with flonicamid 50 WDG, diafenthuron 50 WP, imidacloprid 70 WG, fipronil 5 SC, thiacloprid 21.7 SC and clothianidin 50 WDG (52.50 to 60.00 % mortality).

Table.1 Insecticides used for relative toxicity against *C. zastrowi sillemi* under laboratory

Sr. No	Insecticide (Common and Trade name)	Conc. (%)	Chemical name (IUPAC name)	MoA Classification Group
1	Bifenthrin 10 EC (Talstar)	0.016	2-Methyl-3-phenylphenyl)methyl (1 <i>S</i> ,3 <i>S</i>)-3-[(<i>Z</i>)-2-chloro-3,3-trifluoroprop-1-enyl]- 2,2-dimethylcyclopropane-1-carboxylate	Pyrethroids (3A) Sodium channel modulators
2	Buprofezin 25 SC (Applaud)	0.05	(<i>Z</i>)-2- tert - butylimino - 3 - isopropyl - 5- phenyl-1,3,5 - thiadiazinan- 4 - one	IGR (16) Inhibitors of chitin biosynthesis, type 1
3	Clothianidin 50 WDG (Dantotsu)	0.005	(<i>E</i>)-1-(2Chloro5thiazolylmethyl) 3-methyl2nitroguanidine	Neonicotinoids (4A) Nicotinic acetylcholine receptor (nAChR) Agonists
4	Diafenthuron 50 WP (Polo)	0.06	<i>N</i> -[2,6bis(1methylethyl) 4-phenoxyphenyl] <i>N</i> - (1,1dimethylethyl) thiourea	Thio-urea (12A) Inhibitors of mitochondrial ATP synthase
5	Fipronil 5 SC (Regent)	0.02	(<i>RS</i>)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfinyl)-1H-pyrazole-3-carbonitrile	Phenylpyrazoles (2B) GABA-gated chloride channel antagonists
6	Imidacloprid 70 WG (Admire)	0.005	<i>N</i> -{1-[(6-Chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl}nitramide	Neonicotinoids (4A) Nicotinic acetylcholine receptor (nAChR) Agonists
7	Lamda-cyhalothrin 5EC (Karate)	0.005	(RS)alphacyano-3-phenoxybenzyl 3-(2-chloro-3,3,3-trifluoropropenyl)- 2,2, Dimethylcyclopropanecarboxylate	Pyrethroids (3A) Sodium channel modulators
8	Methyl Parathion 50EC (Folidon)	0.1	Dimethoxy (4nitrophenoxy) Sulfanylidene {5}-phosphane	Organophosphates(1B) Acetylcholinesterase (AChE) inhibitors
9	Flonicamid 50WDG (Ulala)	0.015	IKI-220; N-cyanomethyl-4 trifluoromethylnicotinamide	Pyridial(9C) Modulators of Chordotonal Organs
10	Thiacloprid 21.7 SC (Splendor)	0.03	{(2 <i>Z</i>)-3-[(6-chloropyridin-3-yl)méthyl]-1,3-thiazolidin-2-ylidène}cyanamide	Neonicotinoids(4A) Nicotinic acetylcholine receptor (nAChR) Agonists
11	Acephate 50 % +Imidacloprid 1.8 SP (Lancer gold)	0.103	N -(Methoxymethylsulfanylphosphoryl) acetamide + N-{1-[(6-Chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl}nitramide	Organophosphates(1B) + Neonicotinoids(4A)
12	Chlorpyrifos 50 %+Cypermethrin 5 % EC (Durmet D 505)	0.11	O,O Diethyl O 3,5,6-trichloropyridin2yl Phosphorothioate + [Cyano- (3 phenoxyphenyl)methyl]3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate	Organophosphates(1B) + Pyrethroids(3A)
13	Deltamethrin 1 %+ Triazophos 35 % EC (Spark)	0.092	[(S)-Cyano-(3-phenoxyphenyl)-methyl] (1 <i>R</i> ,3 <i>R</i>)-3-(2,2-dibromoethenyl)-2,2-dimethyl-cyclopropane-1-carboxylate + O, O- diethyl O- (1- Phenyl - 1 H - 1,2,4- triazol - 3 yl) Phosphorothioate	

Table.2 Relative toxicity of *C. zastrowi sillemi* to different pesticides under laboratory condition

Tr.	Insecticidal treatments	Per cent mortality of <i>C. zastrowi sillemi</i> hour after exposure									
		Larvae								Adult	
		12 hour		24 hour		48 hour		72 hour		24 hour	
T ₁	Bifenthrin 10 EC	22.77	(15.00)	46.42	(52.50)	67.47	(85.00)	89.67	(100.00)	55.36	(67.50)
T ₂	Buprofezin 50 WDG	0.29	(0.00)	22.78	(15.00)	40.66	(42.50)	53.70	(65.00)	37.66	(37.50)
T ₃	Clothianidin 50 WP	17.85	(10.00)	42.10	(45.00)	80.60	(95.00)	80.60	(95.00)	50.78	(60.00)
T ₄	Diafenthuron 50 WP	15.67	(7.50)	43.53	(47.50)	67.47	(85.00)	78.43	(92.50)	47.87	(55.00)
T ₅	Fipronil 5 SC	0.29	(0.00)	27.99	(22.50)	32.88	(30.00)	50.87	(60.00)	49.29	(57.50)
T ₆	Imidachloprid 70 WG	15.67	(7.50)	40.66	(42.50)	59.97	(75.00)	70.22	(87.50)	47.87	(55.00)
T ₇	Lamda-Cyhalothrin 5 EC	22.49	(15.00)	53.20	(62.50)	60.09	(75.00)	89.67	(100.00)	65.76	(82.50)
T ₈	Methyl parathion 50 EC	37.48	(37.50)	89.67	(100.00)	89.67	(100.00)	89.67	(100.00)	89.68	(100.00)
T ₉	Flonicamid 50 WDG	17.84	(10.00)	43.53	(47.50)	57.08	(70.00)	65.37	(80.00)	46.43	(52.50)
T ₁₀	Thiacloprid 21.7 SC	26.38	(20.00)	46.41	(52.50)	69.36	(87.50)	89.68	(100.00)	49.34	(57.50)
T ₁₁	Acephate 50% + Imidachloprid 1.8% SP	37.66	(37.50)	56.84	(70.00)	67.18	(85.00)	89.68	(100.00)	65.76	(82.50)
T ₁₂	Chloropyrifos 50% + cypermethrin 5% EC	33.20	(30.00)	64.15	(80.00)	89.67	(100.00)	89.68	(100.00)	80.61	(95.00)
T ₁₃	Deltamethrin 1% + Triazophos 35% EC	22.49	(15.00)	57.07	(70.00)	74.29	(92.50)	89.68	(100.00)	89.68	(100.00)
	G.M.	20.78	--	48.80	--	65.88	--	79.00	--	59.70	--
	S Em \pm	3.78	--	5.40	--	4.12	--	5.73	--	4.43	--
	C.D. at 0.5%	11.55	--	16.49	--	12.59	--	17.49	--	13.53	--
	C.V. %	25.74	--	15.65	--	8.85	--	10.25	--	10.50	--

Note: Figures in the parenthesis are original value, those outside are the arc-sine transformed mean

Table.3 Susceptibility of larvae and adult of *C. zastrowi sillemi* to insecticides based on initial evaluation test in laboratory at recommended dose

Sr. No.	Insecticides	Conc. (%)	Insecticides category* based on relative toxicity to <i>C. zastrowi sillemi</i> (hour after exposure)		
			Larvae (second instar)		Adults (2-day old)
			(48 H)	(72 H)	(24 H)
T ₁	Bifenthrin 10 EC	0.016	3	4	2
T ₂	Buprofezin 50 WDG	0.05	1	2	1
T ₃	Clothianidin 50 WP	0.005	3	3	2
T ₄	Diafenthuron 50 WP	0.06	3	3	2
T ₅	Fipronil 5 SC	0.02	1	2	2
T ₆	Imidachloprid 70 WG	0.005	2	3	2
T ₇	Lamda-Cyhalothrin 5 EC	0.005	2	4	3
T ₈	Methyl parathion 50 EC	0.1	4	4	4
T ₉	Flonicamid 50 WDG	0.015	2	3	2
T ₁₀	Thiacloprid 21.7 SC	0.03	3	4	2
T ₁₁	Acephate 50% + Imidachloprid 1.8% SP	0.103	3	4	3
T ₁₂	Chlorpyriphos 50% + cypermethrin 5% EC	0.11	4	4	3
T ₁₃	Deltamethrin 1% + Triazophos 35% EC	0.092	3	4	4

Note:

IOBC/WPRS rating		
No.	Categories	Per cent mortality
1	Harmless	<50
2	Slightly harmful	50 to 79
3	Moderately harmful	80 to 99
4	Harmful	>99

Source: Hassan (1989)

The highest mortality (100%) was found in methyl parathion 50, deltamethrin 1%+triazophos 35 % EC and chlorpyifos 50%+cypermethrin 5 % and was significantly inferior to rest of the insecticide treatments.

The tested insecticides were also categorized as for their safety based on the IOBC method revealed that buprofezin 25 SC was categorized as harmless; bifenthrin 10 EC, clothianidin 50 WP, diafenthuron 50 WP, fipronil 5 SC, imidacloprid 70 WG, flonicamid 50 WDG and thiacloprid 21.7 SC as slightly harmful; lamda-cyhalothrin 5 EC, acephate 50% + imidachloprid 1.8% SP and chloropyrifos 50%+cypermethrin 5% EC as moderately harmful and methyl parathion 50 EC and deltamethrin 1% + triazophos 35% EC as harmful insecticides against the adults of *C. zastrowi sillemi*.

In present study buprofezin 25 SC @ 0.05 % recorded 65.0 % mortality of second instar larvae of *C. zastrowi sillemi* at 72 hours after exposure and was categorized as slightly harmful whereas diafenthuron 50 WP @ 0.06% as moderately harmful insecticide recording 92.50 % mortality. Earlier, Nasreen *et al.*, (2005) also reported that buprofezin 25 WP @0.531 % as slightly harmful and diafenthuron 500 SC @ 0.5 % was harmful (48 hours after exposure) to first instar larvae of *C. carnea*. Sabry and El-Sayed (2011) also reported that buprofezin 25 SC was harmless to second instar larvae of *C. carnea*. In present study, imidacloprid 70 WG @0.005% was found moderately harmful whereas acephate 50 %+imidacloprid 1.8 % SP found as harmful combination product at 72 hours after exposure. Nasreen *et al.*, (2005) reported that imidacloprid 200 SL @ 0.178 as harmful insecticide to first instar larvae. In contrast to present finding, Preetha *et al.*, (2009) classified imidacloprid 17.8 SL and diafenthuron 50 WP as harmless insecticides which caused< 50 per cent mortality of egg,

larvae and adults of *C. carnea* at recommended dose. Rezaei *et al.*, (2006) found imidacloprid 35 SC as harmless to 2-day old larvae of *C. carnea*. This variation might be due to formulations and assaying techniques. Further in present study, bifenthrin 10 EC, lamda-cyhalothrin 5 EC, methyl parathion 50 EC, thiocloprid 21.7 SC and all three combination products (chloropyrifos 50% + cypermethrin 5% EC, acephate 50% + imidacloprid 1.8% SP and deltamethrin 1% + triazophos 35% EC) recorded 100 per cent mortality 72 hours after exposure and were found harmful to larvae of *C. zastrowi sillemi*. Vadodaria *et al.*, (2001) reported that combination products, Polytrin-C (profenofos 40 %+ cypermethrin 4% 44 EC) and Nurelle-D 505 (chloropyrifos 50 % + cypermethrin 5% 55 EC) were toxic by recording 90 and 100 per cent mortality of larvae of *C. carnea*. Sabry and El-Sayed (2011) reported that lamda-cyhalothrin 2.5 EC was moderately harmful to second instar larvae of *C. carnea*. Amarasekare and Shearer (2013) stated that lamda-cyhalothrin @ 0.005% and Novaluron @ 0.04% were toxic to second instar larvae of both the species of *C. johnsoni* and *C. carnea*. In contrast to present findings, Lingren and Ridgway (1967) reported that methyl parathion was less toxic to larvae of chrysopid when treated topically or exposed to glass surface. This might be due to difference in formulation and assaying technique used (Table 1-3).

Further, in present study buprofezin 25 SC @ 0.05 % recorded 37.50 % mortality of 2-day old adults of *C. zastrowi sillemi* at 24 hours after exposure and was categorized as harmless insecticide to adult. Sabry and El-Sayed (2011) also reported that buprofezin 25 SC was harmless to adults of *C. carnea*. Imidacloprid 70 WG and diafenthuron 50 WP were found slightly harmful to adults of *C. zastrowi sillemi* when exposed to poisoned food in present study. Katole and Patil (2000)

reported that seed treatment of imidacloprid @ 8 g per kg of seed as safer treatment to adults of *C. carnea* than the foliar spray. Preetha *et al.*, (2009) classified imidacloprid 17.8 SL and diafenthiuron 50 WP as harmless insecticides which caused < 50 per cent mortality of adults of *C. carnea* at recommended dose. The present findings of lamda-cyhalothrin 5 EC as moderately harmful was more or less in confirmation with the report of Amarasekare and Shearer (2013) who stated that lamda-cyhalothrin @ 0.005% was toxic to adults of both the species of *C. johnsoni* and *C. carnea*.

Acknowledgement

Authors are highly thankful to Biocontrol Laboratory, Department of Entomology, N. M. College of Agriculture, Navsari for providing bioagent rearing facilities for conduct of the experiment.

References

Abbott WS, 1925. A method of computing the effectiveness of an insecticide. *J. Econ. Entomol.*, 18: 265-267.

Amarasekare KG and Shearer PW, 2013. Comparing effect of insecticides on two green lacewings species, *Chrysoperla johnsoni* and *Chrysoperla carnea*. *J. Econ. Entomol.*, 106(3): 1126-1133.

Anonymous, 1994. Trichogrammatids, Project Directorate of Biological Control, Bangalore, Technical Bulletin, 7: 1-93.

Balasubramani V and Swamiappan M, 1994. Development and feeding potential of the green lacewing, *Chrysoperla carnea* (Stephens) on different insect pests on cotton. *Anzeiger fur Schadlingskunde Pflanzenschutz Umweltschutz*, 67(8): 165-167.

Bellows S, 2001. Restoring population balance through natural enemy introductions. *Biol. Contr.*, 21: 199-205.

Bigler F and Waldburger M, 1994. Effect of pesticides on *Chrysoperla carnea* Stephens (Neuroptera: Chrysopidae) in laboratory and semi field. *J. Appl. Entomol.*, 17: 55-59.

Burke HR and Martin DF, 1956. The biology of three chrysopid predators of the cotton aphid. *J. Econ. Entomol.*, 49: 698-700.

Chakraborty D, Korat DM and Deb S, 2011. Observations on the behaviour of the green lacewing, *Chrysoperla zastrowi sillemi* (Esben-Peterson). *Insect Pest Management, A. Current Scenario, Dunston P. Ambrose, Entomology Research Unit, St. Xavier's College, Palayamkottai, India*, pp:399-403.

Chen TY and Liu TX, 2002. Susceptibility of immature stages of *Chrysoperla rufilabris* (Neuroptera: Chrysopidae) to pyriproxyfen, a juvenile hormone analog, *J. Appl. Entomol.*, 126: 125-129.

El-Arnaouty SA, 1991. Studies on the biology and manipulation of *C. carnea* and *Chrysoperla sinica* Tjender (Neuroptera: Chrysopidae) for controlling the green peach aphid, *Myzus persicae* Sulzer (Homoptera: Aphididae) in green houses. *Ph. D. Thesis, Cairo Univ., Egypt*, pp. 247.

Gautam S, Singh AK and Gautam RD, 2010. Olfactory responses of green lacewing, *Chrysoperla* sp. (carnea group) and *Mallada desjardinsi* on mealybug, *Phenacoccus solenopsis* (Homoptera: Pseudococcidae) fed on cotton. *Acta Ento. Sinica*, 53: 497-507.

Hameed A, Saleem M, Ahmad S, Aziz MI and Karar H, 2013. Influence of Prey Consumption on Life Parameters and Predatory Potential of *Chrysoperla carnea* against Cotton Mealy Bug. *Pakistan J. Zool.*, 45(1): 177-182.

Hassan SA, 1989. Testing methodology and the concept of the IOBC/WPRS

working group. In: Pesticides and non-target invertebrates (Ed. Jepson, P.C.), pp. 1-18. Intercept, UK.

Hassan SA, Bigler F, Blaisinger P, Bogenschutz H, Brun J, Chiverton P, 1985. Standard methods to test the side effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group "Pesticides and Beneficial Organisms". *Bull EPPO*, 15:214-255

Hydron SB and Whitecomb WH, 1979. Effects of larval diet on *Chrysoperla rufilabris*. *Fla. Entomol.*, 62: 293-298.

Katole SR and Patil PJ, 2000. Biosafety of imidacloprid and thiamethoxam as seed treatment and foliar spray to some predators. *Pestology*, 24(11): 11-13.

Lingren PD and Ridgway RL, 1967. Toxicity of five insecticides to several insect predators. *J. Econ. Entomol.*, 60(6): 1639-1641.

Morrison RK, 1985. *Chrysoperla carnea*. In: Hand book of insect rearing (eds. P. Sing and Moore, R. F.) vol. i. Elsevier, Amsterdam, pp: 419-426.

Nagrare VS, Kranthi S, Biradar VK, Zade NN, Sangode V, Kakde G, Shukla RM, Shivare D, Khadi BM and Kranthi KR, 2009. Widespread infestation of the exotic mealybug species, *Phenacoccus solenopsis* (Tinsley) (Hemiptera: Pseudococcidae) on cotton in India, *Bull Entomol Res.*, 99(5): 537-541.

Nasreen A, Mustafa G and Ashfaq M, 2005. Mortality of *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae) after exposure to some insecticides; laboratory studies. *South Pacific studies*, 26(1): 1- 6.

Nikam ND, Patel BH and Korat DM, 2010. Biology of invasive mealy bug, *Phenacoccus solenopsis* Tinsley (Hemiptera: Pseudococcidae) on cotton. *Karnataka J. Agri. Sci.*, 23: 649-651.

Patel MG, Jhala RC, Vaghela NM and Chauhan NR, 2010. Bio-efficacy of buprofezin against mealybug, *Phenacoccus solenopsis* Tinsley (Hemiptera: Pseudococcidae) an invasive pest of cotton. *Karnataka J. Agri. Sci.*, 23: 14-18.

Pawar SR, Desai HR, Pingle SV, Patel CJ and Kumar V, 2011. Assessment of avoidable loss of seed cotton yield due to the infestation of mealy bug, *Phenacoccus solenopsis* Tinsley in south Gujarat. In: World Cotton Research Conference held on Nov. 7-11, 2011 at Mumbai, book of abstracts, Abst. No. 101, pp-148 (poster presentation).

Pedigo LP and Rice ME, 2010. Entomology and pest management. Prentice-Hall of India Pvt. Ltd. New Delhi.

Preetha G, Stanley J, Chandrasekaran TMS and Kuttalam S, 2009. Toxicity of imidacloprid and diafenthionuron to *Chrysoperla carnea* (Stephens) in the laboratory conditions. *Journal of plant protection research*, 49(3): 290-296.

Ram, P. and Saini, RK. 2010. Biological control of mealybug, *Phenacoccus solenopsis* Tinsley on cotton: a typical example of fortuitous biological control. *J. Biol. Cont.*, 24: 104-109.

Rashid MM, Khattak MK and Abdullah K, 2011. Toxic and residual activities of selected insecticides and neem oil against cotton mealybug, *Phenacoccus solenopsis* Tinsley (Sternorrhyncha: Pseudococcidae) under laboratory and field conditions. *Pakistan Entomol.*, 33: 151-155.

Rashid MM, Khattak MK, Abullah K, Amir M, Tariq M and Nawaz S, 2012. Feeding potential of *Chrysoperla carnea* and *Cryptolaemus montrouzieri* on Cotton mealybug, *Phenacoccus solenopsis*. *The Journal of Animal & Plant Sciences*, 22(3): 639 643.

Rezaei M, Talebi K, Naveh VH and Kavousi

A, 2006. Impacts of the pesticides imidacloprid, propergite and pymetrozine *Chrysoperla carnea* (Stephens). *BioControl*, 10: 6-14.

Sabry KH and El-Sayed AA, 2011. Biosafety of a biopesticide and some pesticides used on cotton crop against green lacewing, *Chrysoperla carnea* (Stehens) (Neuroptera: Chrysopidae). *Journal of Biopesticides*, 4(2): 214-218.

Sattar M, Hamed M and Nadeem S, 2007. Predatory potential of *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae) against cotton mealy bug. *Pakistan Entomol*, 29: 103-106.

Tanwar RK, Jeykumar P and Monga D, 2007. Mealy bugs and Their Management, NCIPM Technical Bulletin, 19: 16.

Vadodaria MP, Pastagia JJ, Bandhania KA, Patel KS and Patel UG, 2001. Studies on toxic effect of insecticides on larvae of *Chrysoperla sceleste* Banks under laboratory condition. A Paper presented in National conference of plant protection: New horizons in millennium organized by national conference of plant protection at Udaipur (India) during February 23-25.

Yuksel S and Gocmen H, 1992. The effectiveness of *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae) as a predator on cotton aphid *Aphis gossypii* Glover. (Homoptera: Aphididae). *Proc. the Sec. Turk. National Cong. Entomol.*, Pp. 209-216.

Zaki FN, El-Shaarawy MF and Farag NA, 1999. Release of two predators and two parasitoids to control aphids and whiteflies. *Anzeiger Schadlingskunde Pflanzenschutz Umweltschutz*, 72: 19-20.

How to cite this article:

Bhojani, D.V., H.R. Desai, C.U. Shinde and Bhanderi, G.R. 2018. Relative Toxicity of Commonly Used Insecticides and Combination Products in Cotton Ecosystem to *Chrysoperla zastrowi sillemi* (Esben-Peterson) under Laboratory Condition. *Int.J.Curr.Microbiol.App.Sci*. 7(01): 1523-1533. doi: <https://doi.org/10.20546/ijcmas.2018.701.185>