GPS-GIS Based Soil Maps of Micronutrients Status in Organic Farms at College of Agriculture, Pune (M.S.), India

Vivekananda Aich¹, N.B. More¹, Shiva Kumar Udayana²* and G.D. Patil¹

¹Division of Soil Science and Agricultural Chemistry, College of Agriculture, Pune, 411005, Maharashtra, India
²Department of Agricultural Chemistry and Soil science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal-741252, India

*Corresponding author

Abstract

A global positioning system (GPS) based soil survey conducted during the year 2014-15 at Division of Soil Science and Agricultural Chemistry, College of Agriculture, Pune with an objective to generate soil maps of micronutrient status in organic farm at College of Agriculture, Pune using GIS software. The geo-referenced 125 soil samples from a depth of 0-15 cm were collected and analyzed for pH, EC, OC, CaCO₃, Fe, Zn, Mn and Cu and categorized as per criteria followed in six tier ratings. The content of available Fe, Mn, Zn, Cu and B in organic farm were ranged from 5.96 to 11.70, 5.62 to 16.68, 1.06 to 3.68, 3.36 to 7.64 and 0.33 to 0.69 mg kg⁻¹ respectively. Soil micronutrient maps showing the spatial distribution were prepared in Arc Info GIS. The maps of Fe, Mn, Zn, Cu and B nutrients clearly indicated the deficiency of nutrients constrained in soil for crop production. Based upon the coefficient of determination between micronutrients and soil properties a positive correlation observed between organic carbon and Mn, Cu and Zn. The CaCO₃ content in the soil showed negative and significant correlation with available Fe and Mn.

Keywords: Organic farm, Spatial distribution, GPS, GIS, Micronutrient maps and Correlation coefficient.

Accepted: xx June 2017
Available Online: xx August 2017

Introduction

The initiation of newly developed tools like Global Positioning System (GPS), Geographical Information System (GIS), which helps in generating the spatial thematic maps about the distribution of nutrients (Sharma, 2004), the maps generated through global positioning system (GPS) and geographical information system (GIS) helps in delineating the homogeneous units to decide on the sampling size and thereby saving a lot of problems. This also helps to monitor the changes in nutrient status over a period of time as geo referenced sampling side can be revisited with the help of GPS which is otherwise difficult in random sampling (Sood et al., 2004). The maps can also be useful for guiding the farmers to decide the amount of micronutrient fertilizers for optimum/economic returns areas having deficiency of one or more nutrients than those having sufficient nutrients. The imbalance use of micronutrient fertilizers over a period of time can be minimized by using soil fertility maps. The GPS-GIS technique has great
Materials and Methods

The geo-referenced surface (0-20 cm) soil samples (125) were collected from organic farm, College of Agriculture, Pune at an interval of 50 m grid (Figure 1) with the help of hand held global Positioning system (GPS) version 9.3. Then soil samples were brought to the laboratory and air dried under shade avoiding contamination with foreign/iron materials and then crushed with a wooden pestle and mortar. The samples are then screened through a 2 mm sieve and the pebbles, stones and roots were rejected. The analysis of soil samples with respect to chemical properties have been carried out by using standard methods as described in Page et al., (1982). Available micronutrients (Fe, Mn, Zn, and Cu) by DTPA extractable method (Lindsay and Norwell, 1978) and available B (Bingham 1982) were used for estimation.

Generation of maps

The revenue map of organic farm of college was digitized. The Arc catalogue software, the columns for available Fe, Mn, Zn, Cu and B were added in the layer to enter the attribute data. The available data were imported from MS-Excel and assigned to polygon attribute table in the layer. From the attribute data base, different thematic layers were reclassified to generate various thematic maps on available nutrients of N, P and K values. The suitable annotations like legend, North arrow and scale were composed on thematic maps. The thematic maps of available Fe, Mn, Zn, Cu, and B are generated and presented. The samples were analyzed for micronutrient status an prepared thematic map by using of Arc GIS 9.3 version.

Results and Discussion

Chemical properties

The pH of the soils ranges from 7.45 to 8.06 (Table 1) with mean value of 7.91. Among the soil samples tested, most of the soils were slightly alkaline (78.40 %) followed by moderately alkaline (21.60 %). The very less variation in soil pH may be due to the inherent homogeneity occurrence of black soils within the organic block and specific cultural and fertilizer management practices to be fallowed. The similar types of observations were also recorded by Katariya (2011) in soil collected from the Water Management Project-Block A, Central Campus, MPKV, Rahuri. Most of the samples were slightly alkaline in nature. this might be due to soils are sloppy, shallow, well drained and light in colour and rest samples are moderately alkaline due to deep to medium black soils being under irrigation since long have shifted to alkaline condition (Yadav, 2002). The electrical conductivity of various soil samples of organic farm were ranges from 0.18 to 0.43dS m⁻¹ with mean value of 0.31dS m⁻¹. The results indicated that all the soils are normal in nature and suitable for all types of crops and for healthy plant growth due to the soils are free from salinity. The
similar results were also reviewed by Padole and Mahajan (2003) in swell-shrink soils of Vidharbha region. The organic carbon content ranges from 2.9 to 9.6 g kg\(^{-1}\) with the mean of 6.1 g kg\(^{-1}\). In general, 46.4 per cent soils were moderate and 40.8 per cent soils were moderately high in organic carbon content. Out of total cultivated area of the organic farm, 9.6 per cent of the area comes in high organic carbon content, 46.40 per cent are moderate, 40.80 per cent are moderately high and 3.2 per cent are low organic carbon content. Moderate and moderately high content of organic carbon was observed which might be because of addition of organic matter into the soil. The wide variation in organic carbon content in the tested soil might be because of decomposition rate of substrate and different vegetable crops to be grown in the organic farms. The similar types of result were also reported by Meena (2009) in Central Research Farm of MPKV, Rahuri, Maharashtra and Yeresheemi et al., (1997) in salt affected soils of Krishna Command of Karnataka. The calcium carbonate ranged from the 5.0 to 10.75 per cent with an average of 6.59 per cent. The 80 per cent soils were found in moderately high calcium carbonate content, while 16.8 per cent in moderate followed by 3.2 per cent soils were in very high calcium carbonate content.

Micronutrient status of soils

The available iron in soils of organic farm of College of Agriculture, Pune was ranged from 5.96 to 11.70 mg kg\(^{-1}\) with an average of 9.52 mg kg\(^{-1}\) (Table 2 and Fig. 2). All the soil samples collected from organic farm were sufficient in available iron, as the critical limit of available iron is 4.5 mg kg\(^{-1}\) (Takkar *et al*., 1989). The similar trend of Fe was noted by Meena (2009) in Central Research Farm MPKV, Rahuri for different Inceptisols of Maharashtra. The sufficiency of available iron might be due to high organic matter content whereas deficiency might be due to excess of phosphorus in soil. The available manganese in soils of organic farm was ranged from 5.62 to 16.68 mg kg\(^{-1}\) with an average of 11.83 mg kg\(^{-1}\) (Table 2 and Fig. 3). All the soil samples collected from organic farm were sufficient in available manganese, as the critical limit of available manganese is 2 mg kg\(^{-1}\) (Takkar *et al*., 1989).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Chemical properties of soils in organic farm, College at Agriculture, Pune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particular</td>
<td>pH (1:2.5)</td>
</tr>
<tr>
<td>Mean</td>
<td>7.91</td>
</tr>
<tr>
<td>Range</td>
<td>7.45-8.06</td>
</tr>
<tr>
<td>Category</td>
<td>Slightly alkaline (78.40)*</td>
</tr>
<tr>
<td></td>
<td>Moderately alkaline (21.60)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SE ±</td>
<td>0.013</td>
</tr>
</tbody>
</table>

(* Figures in parenthesis indicate per cent value)
Table.2 Micronutrient status of soils (kg ha$^{-1}$) in organic farm, at College of Agriculture, Pune

<table>
<thead>
<tr>
<th>Particular</th>
<th>DTPA extractable micronutrients (mg kg$^{-1}$)</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td>9.52</td>
<td>11.83</td>
<td>5.82</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td>5.96-11.70</td>
<td>5.62-16.68</td>
<td>3.36-7.64</td>
<td>1.06-3.68</td>
<td>0.33-0.69</td>
</tr>
<tr>
<td>Category</td>
<td>Sufficient (100)</td>
<td>Sufficient (100)</td>
<td>Sufficient (100)</td>
<td>Sufficient (100)</td>
<td>Deficient (56.00)</td>
<td>Sufficient (44.00)</td>
</tr>
<tr>
<td>SE±</td>
<td>0.115</td>
<td>0.206</td>
<td>0.092</td>
<td>0.046</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

(Total No. of soil samples analyzed-125, figures in parenthesis is in per cent)

Table.3 Correlation coefficient between chemical properties and available nutrients in soil of organic farm of College of Agriculture, Pune

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>pH</th>
<th>EC</th>
<th>O.C</th>
<th>CaCO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>-0.007</td>
<td>-0.110</td>
<td>-0.032</td>
<td>-0.170**</td>
</tr>
<tr>
<td>Mn</td>
<td>-0.008</td>
<td>-0.328*</td>
<td>0.131</td>
<td>-0.244*</td>
</tr>
<tr>
<td>Cu</td>
<td>0.030</td>
<td>-0.137</td>
<td>0.043</td>
<td>-0.110</td>
</tr>
<tr>
<td>Zn</td>
<td>0.083</td>
<td>-0.101</td>
<td>0.062</td>
<td>-0.066</td>
</tr>
<tr>
<td>B</td>
<td>-0.064</td>
<td>-0.018</td>
<td>-0.078</td>
<td>-0.031</td>
</tr>
</tbody>
</table>

* Significant at 5% level-0.1946
** Significant at 1% level-0.1636

Fig.1 Location map of organic farm, A.C, Pune
Fig. 2&3 GPS based soil available Fe map and GPS based soil available Mn map

Fig. 4 GPS based soil available Cu map
The similar observations have been reported by Meena (2009) in Central Research Farm, Central Campus, MPKV, and Rahuri. The sufficiency of available Mn might be due to high organic matter content and optimum soil moisture content.

The available copper in soils of organic farm was ranged from 3.36 to 7.64 mg kg\(^{-1}\) with an average of 5.82 mg kg\(^{-1}\) (Table 2 and Fig. 4). All the soil samples collected from organic farm were sufficient in available copper, as the critical limit of available copper is 0.2 mg kg\(^{-1}\) (Katyal and Randhava, 1983). The similar types of results were also found by Meena (2009) in Central Research Farm, Central Campus, MPKV, Rahuri. The sufficiency of available copper might be due to the high organic matter content and optimum soil moisture in soil. The available zinc in soils of organic farm was ranged from 1.06 to 3.68 mg kg\(^{-1}\) with an average of 1.93 mg kg\(^{-1}\) (Table 2 and Fig. 5). Out of all the soil samples collected from organic farm were sufficient in available zinc, as the critical limit of available zinc is 0.6 mg kg\(^{-1}\) (Katyal, 1985). Kharche et al., (2001) recorded the similar trends of DTPA extractable Zn status in soils of Nashik District in Maharashtra. The sufficiency in available zinc might be due to high organic matter content in soil, which acts as natural chelating agent. The available boron in soils of organic farm of college of Agriculture, Pune ranges from 0.33 to 0.69 mg kg\(^{-1}\) with an average of 0.49 mg kg\(^{-1}\) (Table 2 and Fig. 6). Out of all the soil samples collected 56 per cent deficient and 44 per cent were sufficient in available boron, as the critical limit of available boron is 0.5 mg kg\(^{-1}\). Sharma and Katyal (2006) reported that hot water soluble B in surface soils ranged from 0.07 to 3.62 mg kg\(^{-1}\). The deficiency of boron in soils might be due to higher content of CaCO\(_3\) and alkaline pH of soil.

Correlation of available micronutrients with soil properties

The pH was positively and non significantly correlated with Cu and Zn and negatively non significantly correlated with Fe, Mn and B. The similar results were also reported by JadHAV et al., (1978) in some citrus growing soils of Marathwada region in Maharashtra state (India) and found no significant relationship between available zinc and iron with soil pH. The electrical conductivity showed negative and significant correlation with Mn which is evident by r value of -0.328*. Organic carbon showed positive and non significant correlation with available Mn, Zn and Cu. Minakshi et al., (2005) studied the
spatial distribution of micronutrients in soils of Patiala District and reported that organic carbon is positively correlated with Zn, Cu and Mn. The CaCO₃ was negatively and significantly correlated with available Fe and Mn which is evident by ‘r’ values of -0.170**, and -0.244* respectively (Table 3).

References

How to cite this article:

doi: https://doi.org/10.20546/ijcmas.2017.608.108