Recovery of Resistant Thermophilic Campylobacters on Farm and Market Vegetables

A.B. Karikari1*, K. Obiri-Danso2, E.H. Frimpong3 and K.A. Krogfelt4

1Department of Clinical Microbiology, University for Development Studies Tamale, Ghana
2Department of Theoretical and Applied Biology, 3Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana,
4Department of Microbiology and Infection Control, Statens Serum Institute Denmark

*Corresponding author

Abstract

This study focused on establishing the presence of Campylobacter at the farm and retail level and evaluated the antibiogram profile of isolated species. Campylobacter spp. were isolated on mCCDA agar and confirmed by API Campy (biomereaux, France) and the susceptibility profile determined by Kirby-Bauer disk diffusion method. A total of 124 market vegetables comprising 59 lettuce and 65 cabbages and 117 farm vegetables made up of 94 lettuce and 23 cabbages were analysed. Prevalence of 41.9% (52/124) and 23.9% (28/117) were respectively documented in market and farm vegetables. Campylobacter jejuni was the dominant species keyed out from market vegetables (61.5%) followed by C. coli (23.0%), C. lari (11.5%) and C. jejuni sub sp. doylei (3.8%). Fifty percent (50%) of farm vegetable isolates were C. jejuni, 25% constituted C. jejuni sub sp. doylei and 21.4%, 3.6% were C. coli and C. lari respectively. All isolates (100%) were multidrug resistant, with highest resistance observed against cephalaxin, cefotaxime, ampicillin, erythromycin and chloramphenicol (86-100%), 64-75% against tetracyclines, 32-49% to ciprofloxacin, nalidixic acid and norfloxacin and 57-67% to trimethoprim sulphamethoxazole. Against kanamycin and gentamicin resistance of 4-46% was obtained while no resistance (0%) was observed against imipenem. The results provide baseline information on Campylobacter in vegetables and the possible risk it poses to consumers in the face of high level resistance in the species.

Keywords

Antibiotic resistance, Vegetables, Farm, market, Ghana.

Introduction

Campylobacter are zoonotic pathogens that frequently cause diarrhoea in humans often surpassing salmonellosis and shigellosis with C. jejuni and C. coli species mostly implicated (EFSA, 2013; WHO, 2015). Consumption of undercooked meat is the main source of human infections and the most significant risk factor. Nevertheless, environmental routes such as faecally contaminated water serving as conduits for the dissemination of pathogens to foods of non-animal origin have been recognized (Kumar et al., 2001).

Campylobacter resilience to harsh environmental conditions have been proven by several studies contrary to earlier reports of its environmental fragility indicating non-survival on vegetables for a long period of time (Solomon and Hoover, 1999).
Campylobacter presence in the environment, particularly in water as well as soil is well documented (Chai et al., 2007; Chai et al., 2009). The use of Campylobacter-contaminated water to wash vegetables may result in banking the organism on the surface of the product. Also, leafy vegetables irrigated with untreated water or cultivated in Campylobacter contaminated soils are likely to carry the pathogen (Thomas et al., 1999).

The significance of vegetables as important source of campylobacteriosis is supported by the numerous outbreaks linked with raw vegetables, as salad vegetables are considered to be the second highest risk factor for Campylobacter infection after consumption and preparation of chicken (CDC, 2000; Evans et al., 2003; Abadias et al., 2008; Verhoeff-Bakkenes et al., 2010). In Ghana most water bodies from which most vegetable farmers depend on as irrigation sources, have been greatly polluted from human activities such as indiscriminate waste disposal. Some studies from Africa have determined the presence of other pathogenic microorganisms on raw vegetables at the farm and retail level (Amoah et al., 2005) but very limited information is available on the occurrence of Campylobacter on this product.

This study reports on the presence of Campylobacter spp. on vegetables at the farm (Pre-harvest) and market stage (Post- harvest) and the resistance profile of isolated species.

Materials and Methods

Sampling

Fresh vegetables (cabbage and lettuce) were randomly purchased from the Central market as well as six other satellite markets in the Kumasi metropolis. Eleven (11) major vegetable farms were also visited early mornings (before 9:00am) where lettuce and cabbages were obtained for study. At each farm visit, fresh vegetables (either cabbage or lettuce) were randomly picked from vegetable beds depending on the availability at the time of visit. All samples were returned on ice packs to the laboratory for analysis. Sampling took place from May 2013 to February 2014.

Culture, identification and confirmation

A 20-g sample of lettuce or cabbage was cut into pieces and placed into a sterile ziplock bag containing 180 ml sterile 0.1% peptone water and pulsified for 30s using a Microgen Pulsifier (Bioproducts, UK). One ml (1ml) aliquots were transferred into 5ml of blood-free Campylobacter enrichment broth (Oxoid CM0963) supplemented with CCDA supplement (Oxoid SRO155E) in a bijou bottle and incubated at 37°C overnight. A loopful of the overnight culture was plated directly onto CCDA agar plates and incubated microaerophilically (CampyGen Oxoid CN0025A) at 42°C for 48h. Typical colonies were cultured on Nutrient agar from which Gram stain, catalase and oxidase test were performed. Small, curved, catalase and oxidase positive Gram negative rods were presumptively identified as Campylobacter spp. These isolates were further confirmed and characterized by API CAMPY system (bioMerieux, France).

Antibiotic susceptibility test

Antibiotic susceptibility tests were carried out by the Kirby-Bauer disk diffusion method on Mueller-Hinton agar (Liofilchem-Italy) supplemented with 5% sheep blood following CLSI guidelines. Tested antibiotics and their corresponding concentrations were: Ampicillin (10 µg/disc), chloramphenicol (30µg/disc), ciprofloxacin (5µg/disc), kanamycin (30µg/disc), erythromycin (15µg/disc), gentamicin (10µg/disc), nalidixic acid (30 µg/disc), tetracycline (30µg/disc),
cephalexin (30µg/disc), trimethoprim sulfamethoxazole (25µg/disc), norfloxacin (10µg/disc), cefotaxime (30µg/disc) and imipenem (10µg/disc). Mueller-Hinton agar plates were inoculated with 0.5Mcfarland suspension and incubated under microaerophilic condition at 48°C for 24 hours. The zones of inhibition were recorded and results interpreted according to EUCAST and CLSI breakpoints for *Campylobacter*. Quality control was attained by *E. coli* (ATCC25922) and *S. aureus* (ATCC25923) strains.

Statistical analysis

Percentages were used for the descriptive analysis. Associations were determined using the Chi-square test at a significance level of < 0.05. Stata 14.0 software was used for statistical analysis.

Results and Discussion

Of the 124 market vegetable samples (59 lettuce and 65 cabbage) and the 117 farm vegetables (94 lettuce and 23 cabbage), 52 (27 cabbage, 25 lettuce) and 28 (7 cabbage, 21 lettuce) isolates were confirmed as *Campylobacter* with a prevalence rate of 41.9% (52/124) in market vegetables and 23.9% (28/117) in farm vegetables. There were statistically significant (p=0.003) differences in the isolation frequency of *Campylobacter* from market and farm vegetable samples (Table 1).

In the market vegetable samples, *Campylobacter jejuni* was most prevalent (61.5%) followed by *C. coli* (23.0%), *C. lari* (11.5%) and *C. jejuni sub sp. doylei* (3.8%). Similarly, 50% of farm vegetable isolates were *C. jejuni*, 25% *C. jejuni sub sp. doylei*, 21.4% *C. coli* and 3.5% *C. lari* (Table 2). Market vegetable strains showed resistance of 98%, 96%, 90%, 75% and 67% respectively to Ampicillin, erythromycin, chloramphenicol, tetracycline and trimethoprim sulfamethoxazole. Against the cephalosporins; resistance was 100% each to cephalaxin and cefotaxime. Resistance to the quinolones was 49% to ciprofloxacin, 44% to nalidixic acid, and 35% to norfloxacin. Against the aminoglycosides, resistance was 46% to gentamicin and 25% to kanamycin; as 0% resistance was observed against imipenem (Table 3).

Farm vegetable isolates showed resistance of 100%, 96%, 93%, 64% and 57% respectively to erythromycin, chloramphenicol, Ampicillin, tetracycline and trimethoprim sulfamethoxazole. Against the cephalosporins; resistance was 100% to cephalaxin and 86% to cefotaxime. Resistance to the quinolones was 46% each against nalidixic acid and ciprofloxacin and 32% to norfloxacin. Against the aminoglycosides; resistance was 11% to kanamycin and 4% to gentamicin; as 0% resistance was to imipenem.

About sixty five percent (65.4%) of *Campylobacter jejuni*, 23.1% of *C. coli* and 11.5% of *C. lari* strains from market vegetables were multidrug resistant. Among farm vegetable isolates 75.0% of *C. jejuni*, 21.4% of *C. coli* and 3.6% of *C. lari* strains were multidrug resistant. The difference in multidrug resistance between farm and market vegetable strains was not statistically significant (p= 1.000) (Table 4).

Globally, there is limited data on *Campylobacter* contamination in vegetables (Kumar *et al.*, 2001; Chai *et al.*, 2007). Our study found 41.8% *Campylobacter* contamination of market vegetables and 23.9% of farm vegetables. Market vegetable contamination with *Campylobacter* in our study is consistent with the work of Hussain *et al.*, (2007) who reported 40.9% in
vegetables from retailers in Pakistan and 52.6% in Malaysia by Khalid et al., (2014). Much lower levels; 3.1%, 3.57%, and 7.5% have also been reported in Canada, India and Brazil, respectively (Park and Sanders, 1992; Kumar et al., 2001; Carvalho et al., 2013). Contamination levels of 18.8% and 35.2% have also been reported by Chai et al., (2009) and Khalid et al., (2014) in farm vegetables.

Campylobacter on vegetables at pre-harvest stage (farms) may come from faecally polluted irrigation water, use of poultry manure for soil enrichment and use of raw sewage sludge (Jones et al., 1990; Kumar et al., 2001; Chai et al., 2009; Verhoeff-Bakkenes et al., 2011). Moreover, most of the irrigation sources in this study region have been greatly polluted through indiscriminate waste disposal; it is therefore fair to partly attribute the source of *Campylobacter* contamination to these faecally polluted water sources.

Similarly, reasons for the contamination of vegetables at post-harvest stage (market) may be due to the display of vegetables on bare floors, or on old sacks laid on the floor, sprinkling of vegetables with poor quality water to keep them fresh, improper hygiene of the market women, packing and sorting and transportation in rickety public buses or taxis to the markets. These practices which are common among people involved in vegetable trade in the study region have also been confirmed by several authors as sources of contamination (Beuchat, 1996; Beuchat, 2002; Amoah et al., 2007; Chai et al., 2007).

Table 1 Prevalence of *Campylobacter* from farm and market vegetables

<table>
<thead>
<tr>
<th>Vegetable Source</th>
<th>No. Samples</th>
<th>No. Campylobacter Identified N (%)</th>
<th>P-value (Chi-square, df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>124</td>
<td>52 (41.9)</td>
<td>0.003</td>
</tr>
<tr>
<td>Farm</td>
<td>117</td>
<td>28 (23.9)</td>
<td>(8.799,1)</td>
</tr>
<tr>
<td>Total</td>
<td>241</td>
<td>80 (33.2)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Species specific prevalence of *Campylobacter* from vegetable farms and markets in Kumasi

<table>
<thead>
<tr>
<th>Vegetable source</th>
<th>No. isolates (N)</th>
<th>C. jejuni (%)</th>
<th>C. doylei (%)</th>
<th>C. coli (%)</th>
<th>C. lari (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>52</td>
<td>32(61.5)</td>
<td>2(3.8)</td>
<td>12(23.0)</td>
<td>6(11.5)</td>
</tr>
<tr>
<td>Farm</td>
<td>28</td>
<td>14(50.0)</td>
<td>7(25.0)</td>
<td>6(21.4)</td>
<td>1(3.5)</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>46</td>
<td>9</td>
<td>18</td>
<td>7</td>
</tr>
</tbody>
</table>

C. doylei = C. jejuni sub. sp. doylei
Table 3. Resistance and susceptibility patterns of Campylobacter from vegetable farms and market

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Sensitive (%)</th>
<th>Intermediate (%)</th>
<th>Resistant (%)</th>
<th>Farm (N=28)</th>
<th>Market (N=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nalidixic acid</td>
<td>54</td>
<td>NA</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>22</td>
<td>14</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0</td>
<td>NA</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>25</td>
<td>29</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>4</td>
<td>0</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>4</td>
<td>3</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>14</td>
<td>0</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanamycin</td>
<td>56</td>
<td>36</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>93</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>57</td>
<td>11</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXT</td>
<td>43</td>
<td>0</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalexin</td>
<td>0</td>
<td>NA</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td>68</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Multidrug resistance in Campylobacter species from vegetables

<table>
<thead>
<tr>
<th>Vegetable isolates</th>
<th>Total</th>
<th>Market</th>
<th>Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. coli</td>
<td>18</td>
<td>12(23.1)</td>
<td>6(21.4)</td>
</tr>
<tr>
<td>C. lari</td>
<td>7</td>
<td>6(11.5)</td>
<td>1(3.6)</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>55</td>
<td>34(65.4)</td>
<td>21(75.0)</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>52</td>
<td>28</td>
</tr>
</tbody>
</table>

NB: C. jejuni sub sp. doylei was counted as part of C. jejuni isolates
Campylobacter jejuni was the dominant species identified in this study which is consistent with works from other countries. In our market vegetables, 61.5% were C. jejuni and 23.0% C. coli and 50% and 21.4% were C. jejuni and C. coli in the farm vegetables. In Canada, Park and Sanders (1992) reported 88% of C. jejuni and 4% C. coli in vegetables purchased from outdoor markets and supermarkets while in Malaysia, Chai et al., (2007) reported 40.7% C. jejuni and 35.2% C. coli from supermarkets. The high isolation rate of C. jejuni as opposed to C. coli supports the theory that C. jejuni is more resilient to environmental stresses (Gonzalez and Hänninen, 2012; Bronowski et al., 2014); as Chai et al., (2009) also failed to isolate C. coli from soil and manure in Malaysia.

Antibiotic resistance profiles of the Campylobacter species were generally high with isolates showing 100% multidrug resistance. Highest resistance was observed against cephalexin, cefotaxime, ampicillin, erythromycin and chloramphenicol with resistance ranging from 86-100% in both market and farm vegetables. Resistance rates of below fifty percent (32-49%) were recorded for the quinolones (ciprofloxacin, nalidixic acid and norfloxacin), 64-75% for tetracyclines and 57-67% for trimethoprim sulphamethoxazole. However, 4-46% was obtained against the aminoglycosides while no resistance (0%) was observed against imipenem.

In Malaysia, isolates from vegetables has been reported to be 100% multidrug resistant (Chai et al., 2008).

In conclusion, campylobacter species have been established in vegetables from Kumasi at the pre- harvest (farms) and post- harvest stage (markets). Multidrug resistant strains of Campylobacter isolated poses direct risk to consumers since vegetables (cabbages and lettuce) are normally served raw at most food joints in Ghana. It is essential that vegetables are well decontaminated to ensure that they are free of pathogens such as Campylobacters prior to consumption. Much attention should be given to the increasing resistance of pathogens including Campylobacter to commonly used antibiotics in Ghana through comprehensive research and education to control the resistance menace.

Acknowledgement

We acknowledge Prof. Niels Frimodt-Møller and ADMER (www.admerproject.org) for funding this study.

References

Jones, K., Betaieb, M. and Telford, D.R. 1990. Seasonal variation of

How to cite this article: