Review Article

Efficacy of Separate and Premix Formulation of Metsulfuron-Methyl and Carfentrazone-Ethyl on Weeds in Wheat: A Review

Ajit Kumar Paswan¹, Devendra Mandal², Narendra Kumawat³, Jeetendra Kumar⁴, Rakesh Kumar⁴*, Anil Kumar Singh⁴ and Anil Kumar⁵

¹Krishi Vigyan Kendra, Jehanabad, BAU, Sabour-Bihar, India
²Krishi Vigyan Kendra, Rohtas, BAU, Sabour-Bihar, India
³AICRP on Maize-Zonal Agricultural Research Station, Jhabua-457 661, MP, India
⁴ICAR-Research Complex for Eastern Region, Patna-797 106, Bihar, India
⁵Zonal Research Station, Chianki, Palamau, BAU, Kanke-834 006, India

*Corresponding author

ABSTRACT

India has a wide range of agro-climates regions and soil types. The highly diverse agriculture systems are beset with different types of weed problem. Weeds cause 10-80% crop yield losses besides deteriorating quality of products and causing health and environmental hazards. Traditionally, weed control has been largely dependent on manual weeding. However, increased labour scarcity and costs are encouraging farmers to adopting labour and cost saving options. Research on weed management in India is mostly centered on herbicide efficacy. Herbicides applied alone or in combination, have been regarded as essential tools in effective management of weeds in different ecosystem. To meet the demands of increasing population and avoid food import, crop productivity in India needs major improvement, which can be attained by identifying the constraints that hinder in achieving higher yields of wheat. Detailed review of weed flora and weed shift, factor of weed competition and management' options future in India is made under this chapter.

Keywords
Herbicides, Weed, Wheat, Weed control efficiency, Yield.

Introduction

Wheat is an important crop in worldwide and in India, its production increased from a mere 11 MT during 1960-61 to 97.4 MT during 2016-17 (Singh et al., 2017a). This more than 8-fold increase in wheat production was mainly due to adoption of short stature HYVs, use of fertilizers, irrigation and herbicides (Singh et al., 2017b). High nutrient and water requirement along with less competitive nature of these HYVs have provided conducive environment for increased weed infestation. Weeds are regarded as most the disdain to crop production and account for ~1/3rd of total losses caused by all pests (Chhokar et al., 2012).

Weeds have a direct impact on crop productivity including costs of labour, equipment, chemical and other management input (Singh et al., 2011a). Weeds also impact
wheat production indirectly by competing with crop for resources, harbouring crop pest, interfering with water management, reducing grain yield, quality and increasing cost of processing (Zimdahl, 2013). Major weeds associated with wheat are Phalaris minor, Avena spp., Chenopodium album, Melilotus spp., Anagallis arvensis, Vicia sativa, Lathyrus aphaca and Rumex dentatus. In recent years, a new species Rumex sp. has emerged as serious problem in irrigated wheat eco-system (Singh et al., 2011b). Therefore, complexity and diversity of weed flora require more than one herbicide either in sequence or as mixture. Low wheat productivity is due to delayed and sub-optimal wheat establishment, which is further due to late harvesting of long duration rice varieties and weed infestation (Maurya et al., 2013 and Singh et al., 2014). Continuous application of a similar herbicide or use of lower than recommended dose led to development of herbicide resistance (Yadav et al., 2013). The weed flora of wheat consists of both grassy and broad leaf weeds and if uncontrolled; they interfere crop growth by competing for available nutrient, light and water (Jeet et al., 2010a, b, c). Consequently such competition depends upon type of weed species, severity of weed infestation and climatic condition, which affects weed and crop growth (Rao, 2000). In India it has been estimated that out of total yield losses caused by the pests in wheat, weeds account ~33% and extent of yield reduction largely depends on growth and behavior of individual weed species in relation to agro-ecological condition. Eradication of weeds from crop is essential for obtaining the maximum returns. Various methods for eradication of weeds are hoeing, weeding, dabbing, tillage, harrowing, crop rotation biological and chemical control. Therefore, for sustaining food-grain production to feed ever-increasing population, ensuring food security, effective weed management is very essential. 

### Weed flora and weed flora shift

Weed floras associated with wheat have been found variable in different agro-ecological regions of the country (Table 1). In general, Phalaris minor Retz., Avena spp., Chenopodium album, Melilotus spp., Cyperus rotundus and Cynodon dactylon have been observed in most wheat growing areas of India (Singh and Ghosh, 1992). A survey of wheat fields were conducted on farmers’ fields in Eastern Indo-Gangetic region, Faizabad and revealed that crop was infested with Phalaris minor, Anagallis arvensis, Cyperus rotundus, Lathyrus aphaca, Chenopodium album, Vicia sativa and Avena ludoviciana (Vaishya and Kumar, 1993). Singh et al., (1997) observed relative composition of weed flora as Melliotus spp. (24.2%), Anagallis arvensis (20.7%), Phalaris minor (18%) Chenopodium album (13.8%), Cyperus rotundus (11.1%) and Cynodon dactylon (8.3%) in wheat. Sidhu et al., (2000) reported Rumex spinosus a hardy broad leaf weed, becoming very serious problem in several wheat growing areas of Punjab. In other instance, Sardana et al., (2001) observed heavy infestation (73.4%) of Medicago denticulate in wheat field at Gurdaspur, Punjab. Malik et al., (2001) reported infestation of Avena ludoviciana, Chenopodium album, Phalaris minor, Melilotus indica, Fumaria parviflora and Convolvulus arvensis in wheat crop at Hisar, Haryana, India. Thirteen weed spp. were found infesting wheat fields and of these Phalaris minor, Polygonum monospeliensis, Poa annua, Rumex aspera, Medicago denticulata, Anagallis arvensis, Lepidium sativa and Malva neglecta were the most common. Relative frequency, relative density, important value and dominance ratio of Phalaris minor has highest among different weed species (Brar and Walia, 2007). Jat et al., (2007) found that major grassy weed of wheat are Phalaris minor Retz.(29.7%).
Avena ludoviciana L. (40.1%), whereas BLWs are Lathyrus aphaca L. (8.8%), Chenopodium album L. (8.2%), Melilotus indica L. (4%), Rumex retroflexus L. (4.0%), Coronopus didymus L. (2.7%), Cirsium arvensis L. (2.5%).

Garg et al., (2007) reported that Phalaris minor was the dominant weed (49% of the total weed density), followed by Chenopodium album, Rumex retroflexus, Anagallis arvensis, Chenopodium murale, Melilotus indica and Coronopus didymus in 31 wheat fields in Panipat district, Haryana, India. Malva parviflora infested 96% of the wheat fields (25.6 plants/m²) Avena ludoviciana [Avena sterilis sub sp. ludoviciana], which was the dominant weeds. Poa annua, Anagallis arvensis and R. retroflexus infested 6.4, 93.5 and 100%, respectively. Vashisth et al., (2008) observed wheat infestation of 23 weed species comprising 14 families of grasses, sedges and BLWs. Phalaris minor, Avena ludoviciana [A. sterilis sub sp. ludoviciana], Vicia sativa, Rumex sp. and Lathyrus aphaca were the pre-dominant weeds of rice-wheat sequence, whereas P. minor, A. ludoviciana, Chenopodium album, Asphodelus tenuifolius and Cirsium arvense were the pre-dominant weeds of bajra-wheat and arhar-wheat sequences. Five major weeds with 100% event were P. minor, A. ludoviciana, V. sativa, L. aphaca and M. indica.

Factors of crop weed competition

Weeds compete with crop plant for moisture, nutrients, light and space, thereby depriving crop of vital input. Therefore, weed competition is one of the most important constraints in crop production. Weed-crop competition begins, when crop plants and weeds grow in close proximity and their root or shoot system overlap. The competition becomes severe due to more smothering effect, when weeds emerge earlier than the crop. In rice-wheat system, due to enough soil moisture after harvesting of rice, weeds emerge earlier than wheat. Losses in wheat yield are primarily due to reduction in tillering. Under ample soil water and plentiful nutrient supply condition light become the prime factor around which competition forces developed when two grasses grow in association at a nitrogen supply level the yield is limited by light. Cudeny et al., (1991) observed that Avena fatua grew taller than wheat having plant height of 87 to 72 cm, respectively at anthesis under non limiting nitrogen and moisture condition and had a greater portion of their canopy above 80 cm at maturity (28 to 35 and 11.16%, respectively). Water is an essential factor for growth and development of crop plants. Wheat being post-monsoon crop, suffers from water scarcity due to presence of competing weeds if not managed. Competition between cereal crop and weed is primarily for N in early stage of crop growth and if weed is allowed to grow the growth and yield of crop adversely affected. Gautam et al., (1975) from their studies on herbicide and interaction noted a loss of 40.5 kg N/ha in wheat due to weed competition. Weed control treatment increased the N, P and K uptake in crop 135.5, 149.0% and 148.6% compared to weedy check, respectively. Pandey and Singh (1983) observed when associated weeds were allowed to compete with the wheat crop up to harvest, they depleted 9.6, 1.13 and 5.12 kg of N, P and K₂O/ha, respectively. Kundra and Singh (1985) found that quantity of N depletion by weed increased with advanced growth stage due to increased efficiency of applied herbicides and sugarcane of new flushes of weed resulting in increased weed dry matter production. Pandey et al., (2000) summarized that an increasing fertilizer levels resulted significantly better crop performance along with higher weed count and weed dry weight then no fertilizer in wheat. Competition among plants depends on morphology differential response to
environmental parameters ability to extract nutrients and water from rain and other factors. Aldrich (1987) reported that reduction of yield includes environmental condition, time of emergence and possible allelopathic influence. Sage et al., (1987) reported Chenopodium album was more productive at low nitrogen level and had greater nitrogen use efficiency than weeds like Amaranthus retroflexus. Martin and Field (1988) observed that emergence of wild oat 21 DAS did not affect yield of wheat such as simultaneous emergence of weed seed with wheat seedling. The critical period of weed control in wheat is 30-45 DAS and crop should be kept weed free during this period. Majority of farmers are not adhering to this critical period for management of weeds and they mostly delay the herbicide application.

**Effect of weeds on crop growth and yield**

Weed competitive efficiency in cereal crops depends more on root development, time of germination or development of large assimilation surface. Most of weeds had larger root systems and greater assimilation surface than cereals. Singh and Tondon (1966) reported yield reduction in wheat by individual of weed i.e. Chenopodium album and Allium tenuifolius were 25 and 13%, respectively. Nalawaja (1968) reported that densities of Avena fatua 70 and 160 yard−2 reduced wheat yield 20 and 39%, respectively compared to a weed free control. Gautum et al., (1975) observed 60% wheat yield loss to unchecked weed growth. Reeves (1976) observed that number of fertile spikelets and dry matter production of wheat crop was reduced by presence of rye grass in wheat crop. Weed compete with crop plants for nutrients and other growth factors and in the absence of an effective control measure, remove considerable quantity of applied nutrients and decreased yield to a significant level. Tosh and Mishra (1977) observed that grain yield of wheat was reduced by 66.7% due to the presence of Digitaria sanguinalis, Phalaris minor, Eleusine indica, Acanthosperum trispidum and Eupatorium glandulosum. Jalis and Brohi (1978) observed presence of weeds significantly reduced number and size of ears in wheat crop. Thomas and Yaduraju (1999) reported that increasing wild oat density from 0 to 288 m⁻² reduced leaf area of wheat at 60 DAS by 33-41% and at 90 DAS by 60-72% and dry matter production in range of 47-55 and 35-48% at 60 DAS and 69-73% at 90 DAS. Godel (1995) studies the effect of normal annual infestation of weeds on wheat and observed significant difference in number of tillers, length of ear weight of kernels and yield of crop due to weedy conditions. Verma and Pandey (2002) found weed competition results lowered crop yield by 27.2%. Verma and Pandey (2004) observed competition effect of wheat with canary grass, wild oat, blue pimpernel and lamb and reported crop yield loss up to 35%.

**Effect of herbicide mixture on crop growth and yield**

Chemical weed control method is preferred over other weed control methods because it is quick, more effective and relatively cheaper. Inorganic salts, copper sulphate, were used for controlling broad leaved weeds in cereals towards end of 19th century. Extensive use of relatively low dose (1-2 kg/ha) began with the launch of growth regulation herbicides MCPA. The success of these herbicides led to development and production of new herbicide groups and compound have their efficacy in minimizing weed menace in most crop including wheat. Today herbicides constitute integral part of weed management in crops for producing high economic yield. Further, increased use of herbicides can be attributed to increasing labour wages, unavailability of labours at critical period of weeding and to a
great extent infestation of weeds not easily distinguished from crop at early stages of growth (Yadav et al., 2013).

2, 4-D

The discipline of weed science began about 1945 with the introduction of selective, synthetic herbicides, beginning with 2, 4-D. The growing need for research to study the efficacy, mode of action, environmental effects, application technology, and other aspects of this herbicide led to extensive study in different parts of world. In India, since introduction of 2, 4-D as a herbicide has been widely used for the control of broad leaf weeds. Singh (1967) observed that 2,4-D sodium salt at 1.0 kg a.i./ha applied as pre-emergence and repeated post-emergence gave the best control of weeds and produced the highest yield of grain (34.1q/ha). Mishra and Mani (1968) recommended one spraying of 2, 4-D at 0.42 kg/ha applied 30 DAS for effective control of weeds and higher yield of tall wheat. Singh and Singh (1979) noted on increase of 24.6% in wheat grain yield due to application of 2,4-D ester salt. Nayak et al., (2003) revealed that all the weed control treatments significantly decreased the dry weight of weeds at harvest of crop compared to weedy control. Among the herbicidal treatments 2, 4-D and metsulfuron-methyl alone and their combinations showed their superiority over isoproturon alone and combination of isoproturon with metsulfuron-methyl. Grain yield of wheat was recorded the highest with hand weeding followed by combined application of 2, 4-D and metsulfuron-methyl at 500 g/ha and 2 or 4 g/ha, respectively. Singh et al., (2013) found that metsulfuron+2,4-D @ 6g and 500g/ha was most effective herbicide for controlling of both type of weed flora i.e narrow and BLWs throughout the growing season in wheat. Similarly, maximum yield was achieved with the application of metsufuron +2, 4-D, and increase in grain yield of wheat crop owing to better control of weeds.

Carfentrazone-ethyl

Carfentrazone-ethyl belongs to aryl triazolinone family, which has been found effective to control BLWs in wheat by inhibiting activity of protoporphyrinogen oxidase in chlorophyll biosynthetic pathway was evaluated against these weeds and compared with existing recommended herbicides in wheat (Witkowski and Halling, 1989). Recently, carfentrazone has been recommended for BLWs control and added advantage with this herbicide is that it has very fast action and control Malva spp and Solanum nigrum. Singh et al., (2004) reported that Carfentrazone had better efficacy than 2, 4-D and was comparable with metsulfuron. The grain yields recorded in wheat treated with carfentrazone-ethyl and metsulfuron-methyl were similar to weed-free control. The total weed dry matter production in 2, 4-D treated plots was higher than that of carfentrazone-ethyl. Patel et al., (2005) conducted field study at Anand, Gujarat and reported that Carfentrazone-ethyl at 20 g/ha recorded comparable yield to 2, 4-D at recommended rate. Punia et al., (2006) reported that post-emergence application of Carfentrazone at 20 g/ha provided (92-100) % control of all broadleaf weeds including hard controlling weeds Malwa parviflora and convolvulus arvensis in wheat with no residual effect on succeeding sorghum crop. Chopra et al., (2008) reported that carfentrazone 20 g/ha and metsulfuron 4 g/ha controlled 83.7 and 84.1% of broadleaf weeds-respectively and increased seed yield significantly. Carfentrazone at 10 and 20 g/ha and metsulfuron 4 g/ha did not cause any adverse effect on seed germination and vigour hence can be used in seed production plots of wheat.
Carfentrazone ethyl + other herbicide (mixture)

Chopra and Chopra (2005) observed that tank mixture of clodinafop (60 g/ha) with carfentrazone (20 g/ha) controlled both grassy and BLWs resulting 88-90% weed control efficiency and significantly increase seed yield of wheat over sole application of clodinafop and fenoxaprop, tank mixture of metribuzin and isoproturon with carfentrazone and metsulfuron. Singh and Singh (2005) found clodinafop-propargyl was compatible with metsulfuron-methyl [metsulfuron] and carfentrazone-ethyl [carfentrazone] (tank mixture) with regard to the control of Phalaris minor and Chenopodium album in wheat. Fenoxaprop-P-ethyl was compatible with carfentrazone-ethyl but not with metsulfuron-methyl. Similarly, post-emergence (35-40 DAS) application of triasulfuron at 15 g/ha (with and without 1% surfactant) and 20 g/ha alone as well as carfentrazone-ethyl 20 and 25 g/ha controlled BLWs in wheat very effectively and produced grain yield at par with the already recommended herbicide i.e. 2, 4-D 0.5 kg/ha (Walia and Singh, 2007). Chopra et al., (2008) studied the effect of different herbicides as sole and their tank mixtures on yield obtained with the application of chlorsulfuron at 30 g/ha, metsulfuron-methyl at 8 g/ha and alone and combine application of chlorsulfuron at 15 g/ha and Metribuzin at 100 and 200 g/ha were statistically similar to weed free. Similarly, Singh and Ali (2004) assessed efficacy of metsulfuron-methyl against Chenopodium album, Chenopodium murale, Lathyrus aphaca, Melilotus alba, Rumex dentatus, Convolvulus arvensis, Vicia hirsute, Medicago denticulate, Avena ludoviciana [Avena sterilis sub sp. Ludoviciana], Cynodon dactylon and Cyperus rotundus in wheat and its residual effects on succeeding soybean crop. Results reveled application of metsulfuron-methyl was very effective against the broad leaved weeds and did not have any residual effect on succeeding soybean crop. Metsulfuron-methyl 4 g /ha was most effective in controlling BLWs and was greater than 2,4-D and farmers’ practice in increasing wheat yield. Hooda et al.,
(2007) reported that all the yield attributes remained statistically at par with each other in plots treated with various doses of metsulfuron-methyl (2.4 and 8 g/ha). However, among different doses of metsulfuron-methyl, 8.0 g/ha recorded maximum value for yield attributes. Among the plots treated with metsulfuron-methyl, these differences were, however, non significant because wheat might have metabolized herbicide with time. Nayak et al., (2003) also reported similar results. Malik et al., (2008) reported chlorsulfuron 30 g/ha, metsulfuron 4 g/ha and triasulfuron 60 g/ha reduced density of different BLWs in wheat to the extent of 90-100% and proved better than sulfosulfuron (20 and 25 g/ha) and 2, 4-D Na salt (500 and 750 g/ha). Chopra and Chopra (2010) reported sequential or tank mixture application of fenoxaprop (100 g/ha) and clodinafop (60 g/ha) with metsulfuron at 4 g a.i. ha were more effective than their individual application.

**Metsulfuron-methyl + other herbicide (mixture)**

Advantage of combination of metsulfuron and carfentrazone over alone application of metsulfuron and carfentrazone will be in situations having the diverse infestation BLWs particularly *M. parviflora, S. nigrum and L. aphaca*. Ready mix combination of metsulfuron + carfentrazone will provide the control of these weeds. Kurchania et al., (2000) revealed that the higher grain yield of wheat was obtained with the application of metsulfuron-methyl at 4 g/ha+2,4-D @ 500 g/ha or metsulfuron-methyl at 4 g/ha +2,4-D at 250 g/ha and HW under weedy control. However, yield differences amongst metsulfuron-methyl at 2 and 4 g/ha either alone or in mixed application with, 2, 4-D was not significant. Pandey et al., (2000) reported that effect of Metsulfuron methyl, 2, 4-D and their tank mix on weeds. All the weed control treatments significantly decreased weed dry matter production, where in the combined application of metsulfuron methyl+2, 4-D was lower than 2, 4-D alone and Isoproturon. Combined application of 4 g Metsulfuron-methyl/ha and 500 g 2, 4-D Na salt/ha had the highest grain yield compared to other treatments. Nayak et al., (2003) revealed weed control treatments significantly decreased dry weight of weeds compared to weedy control. Among herbicidal treatments 2, 4-D and metsulfuron-methyl alone and their combinations showed their superiority over Isoproturon alone and combination of Isoproturon with Methylsulfuron-methyl. Yadav et al., (2009) found tank mix or sequential application of sulfosulfuron with carfentrazone being at par reduced density and dry weight of *P. minor* similar to sulfosulfuron alone. Hence, carfentrazone was found compatible with sulfosulfuron as tank mixture against complex weed flora in wheat with no loss of herbicidal efficacy. Jat et al., (2007) found that metsulfuron-methyl alone and in combination with clodinafop, fenoxaprop and sulfosulfuron provide excellent control of BLWs. Sulfosulfuron alone controlled both grassy and BLWs but its efficacy against grasses was lower than clodinafop and fenoxaprop and against BLWs than metsulfuron. Sequential application of clodinafop fb metsulfuron and fenoxaprop fb metsulfuron efficiently controlled complex weed flora and produced maximum grain yield and minimum weed population. Kaur et al., (2007) reported new alternative post emergence herbicides *i.e.* pinoxaden, sulfosulfuron+metsulfuron, mesosulfuron+iodosulfuron and trifluralin as pre emergence herbicides were found significantly superior to sulfosulfuron and clodinafop for controlling isoproturon resistant *P. minor*. Brar and Walia (2009) recorded significant reduction in population of *Phellalis minor* as well as broad leaf weeds and increased grain yield of wheat were observed with post
emergence application of clodinafop 60 g/ha followed by 2,4-D 0.5 kg/ha and metsulfuron + iodosulfuron 12 g/ha than clodinafop 60 g/ha alone and control. Among weed control practices sulfosulfuron 25 g/ha recorded highest yield of wheat. Similarly, Singh et al., (1999) reported improved control of hard weed Canada thistle (C. arvense) with tank mix application of herbicides. Paighan et al., (2013) observed among chemical treatments, application of metsulfuron-methyl 4 g/ha gave significantly higher growth and yield attributes of wheat.

Amanpreet and Walia (2010) revealed tall doses of Atlantis 3.6 WDG (metsulfuron + iodosulfuron) i.e. 12 g, 18 g, and 24 g/ha were at par with respect to yield of wheat, irrespective of variable soil moisture levels present at the time of their application and gave an effective killing of weeds resulting in 100% reduction of weeds dry matter compared to unsprayed control. Herbicide applied to wheat showed no adverse effect on germination and growth of succeeding kharif crops including summer moong, cotton, okra and sesbania. Walia et al., (2010) evaluated the performance of new herbicide mixture AEF 04-6340-8% + DIC 1468-14%-22% EC (fenoxaprop-p-ethyl + metribuzin) for control of grassy and broad leaf weeds. Application of this herbicide at 1.25 and 1.5 liter/ha of commercial product provided effective control of P. minor and BLWs of wheat crop and were found statistically at par with Atlantis (metsulfuron-methyl + iodosulfuron methyl) 3.6 WDG 400 g/ha of commercial product with respect to dry matter accumulation by Phalaris minor and BLWs. Yasin et al., (2010) reported fenoxaprop-p-ethyl (Puma Super-75 EW) at 45 g a.i./ha produced relatively less weed biomass and grain yield (4.2 t/ha) fb fenoxaprop-p-ethyl (Chinlima-6.9 EW) at 85 g a.i./ha, which was statistically at par with fenoxaprop-p-ethyl (Gramicide-6.9 EW) at 85 g a.i./ha. Singh et al., (2011) reported better control of R. spinosus (92%) with metsulfuron + carfentrazone tank mixture compared to sole application of either metsulfuron (85%) or carfentrazone (78%). This mixture was better than 2, 4-D formulations as none of the 2, 4-D formulations was effective against R. spinosus.

**Effect of surfactant on efficiency of herbicides**

Surfactants are used as additives to herbicidal sprays to enhance effect of herbicides on target species. Herbicide spray containing surfactants produce smaller droplets, which spread more uniformly on the plant surface, improve wetting of leaves and spreading of on leaf by lowering surface tension. Most of the leaf surface covered with waxes; surfactants dissolve the circular waxes and enhance foliar retention and penetration of herbicide. They also reduce rate of evaporation and thereby increase herbicide uptake.

Glyphosate providing only 14% control of Richardia brasiliensis, tank mix application of 2, 4-D increased the efficiency to 83% and addition of surfactant increased mortality by 96-100% (Sharma and Singh, 2001). Tank mixing of non-ionic and organ silicone surfactants with glyphosate decreased surface tension and contact angle and disrupted or dissolved the waxy layer present at leaf surface to allow greater penetration of glyphosate. Sharma and Singh (1999) assess the effect of metsulfuron-methyl [metsulfuron] (MSM; at 1 and 4 g/ha) alone and in combination with 2, 4-D at 250 and 500 g/ha and surfactant (Triton) at 0.1% on non grassy weeds in wheat cv. UP 2338. Results revealed WCE of MSM at 4 g/ha applied alone was similar to MSM at 2g/ha applied with surfactant. Ready mix formulation of MSM+2,4-D at 2+250 g/ha + surfactant had weed control efficacy similar
to ready mix formulation of MSM+2,4-D at 2.0 +500 g/ha + surfactant or MSM+2,4-D at 4.0+500 g/ha. MSM alone was relatively better than 2,4-D applied alone. Application of ready mix formulation of MSM applied alone or in combination with 2,4-D and surfactant, being at per among them, had significantly more grain yield compare to application of 2,4-D alone at 500 g/ha ethyl ester or sodium salt. Saini and Angiras (2000) determined the optimum rate of sulfosulfuron (15, 22, 30, 37.5 g a.i. /ha) for controlling weeds in rained wheat (*Triticum aestivum*) cv. Surbhi.

**Table.1** Major weeds in different wheat growing zones in India

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Zone</th>
<th>Weed species mostly infesting</th>
</tr>
</thead>
</table>

2447
The dominant weeds in the experimental field were *Avena fatua*, *Phalaris minor*, *Lolium temulentum*, *Coronopus didymus*, *Anagallis arvensis*, *Stellaria media* and *Vicia sp.* Sulfosulfuron at 30 g a.i./ha was par with sulfosulfuron 30 g a.i./ha + surfactant and sulfosulfuron at 37.5 g a.i./ha or without surfactant in significantly reducing weed dry weight and increasing crop yield. A field experiment was conducted to assess effect of Metsulfuron-methyl alone and in combination with 2,4-D. Application of metsulfuron-methyl alone was relatively better than 2,4-D applied alone. Application of ready mix formulation of metsulfuron-methyl alone or in combination with 2,4-D and surfactant, being at par among them had significantly more yield compare to application of 2,4-D alone (Singh et al., 2002). Singh (2006) conducted an experiment to evaluate effect of growth stage and surfactant on the efficacy of sulfosulfuron against some grass and BLWs. Effect of sulfosulfuron was more when applied at 2 to 3 leaf stage compared to 4 to 6 leaf stage, particularly for BLWs. Surfactants significantly increase the herbicidal activity of sulfosulfuron; the effect was more conspicuous on broad leaf weeds.

In conclusion, weeds pose severe competition with the crops for various growth resources. Besides reduction in grain yield, weeds also reduce the quality of produce and act as alternate host for disease causing organisms and insect-pests. Hence, various weed management practices need to be integrated in an appropriate manner during critical period of crop-weed competition. Research on herbicide mixture, post-emergence herbicides in pulses and oilseed, management of parasitic weeds, weed competitive crop cultivars with acceptable yield.
potential, weed management in changing climate scenario and conservation agriculture, effect of herbicides on soil microorganisms need to be strengthened. Considering several advantages of using herbicide resistant crop, it is worthwhile exploring their possible use under Indian conditions.

References


---

**How to cite this article:**