Multiplex PCR for Detection of Genes Encoding Antibiotic Resistance in Staphylococcus aureus

S. Wilfred Ruba1, P. Raja2, Nithya Quintiol3, Govind Vemala4 and K. Porteen5*

1Department of Livestock Products Technology, Veterinary College, Hebbal, Bangalore, 2Department of Animal Biotechnology, 3Department of Veterinary Public Health and Epidemiology, RIVER, Pondicherry and 4Department of Livestock Products Technology (Meat Science), 5Department of Veterinary Public Health and Epidemiology, Madras Veterinary College, Chennai, India
*Corresponding author

A B S T R A C T

A study was carried out to evaluate the prevalence of genes encoding antibiotic resistance for commonly used antibiotics in poultry production in S. aureus isolated from Chicken meat marketed in Chennai City. A multiplex PCR was used for screening of 50 S. aureus isolates for the presence of five genes viz., aacA-aphD (aminoglycoside), tetK and tetM (tetracycline resistance), erm(A) and erm(C) (macrolide-lincosamide-steptogramin B resistance). The results of the study revealed that of the 50 isolates screened all the isolates (100 per cent) carried either one of these resistance gene. Among the various genes either alone or in combination 48 isolates (96 %) carried tetK gene, 44 isolates (88 %) carried aacA-aphD gene, 43 isolates (86 %) carried erm(C) gene, three isolates (6 %) carried tetM gene and none of the isolates carried erm(A) gene. It was evident that 37 of the isolates (74 %) carried three resistant genes followed 6 isolates with two resistance genes (12 %) and one isolate with only one gene. The study clearly indicated the prevalence of multidrug resistant S. aureus in retail chicken meat and its potential in transference of antibiotic resistance to the consumers. This multiplex PCR can be used as a simple, rapid and accurate assay for identification of antibiotic resistance profile and could be used for surveillance in epidemiological studies.

Keywords
S. aureus, Chicken meat, Antibiotic resistance gene, PCR.

Introduction

Emergence of antimicrobial resistance in pathogens especially from foods of animal origin has been mainly attributed to widespread and indiscriminate use of antibiotics in control of infection as well as growth promoters (Swartz, 1997). In addition, increase in international travel and trade have facilitated the easy spread of these resistant isolates over different geographical locations even to locations where antibiotics are seldom used. Among the various pathogens of interest, S. aureus is an important opportunistic pathogen of greatest concern because of its intrinsic virulence and its capacity to adapt to different environmental condition (Waldvogel, 2000).

Staphylococcus aureus has been one of the most adaptive bacteria in the antibiotic era, which is well documented by its ability to
quickly respond and develop a resistance mechanism to the existing and new antibiotic starting from penicillin, methicillin to the most recent antibiotics used in human and animal therapy (Pantosti et al., 2007). Antibiotic resistance in S. aureus is mainly due to acquisition of genes either by horizontal gene transfer or endogenous resistance. The majority of the genes responsible for the resistance to antibiotics are mainly located in the plasmids, transposon or phages. Hence, an understanding of the genes responsible for antibiotic resistance is of public health importance and at present such information is still very limited in India especially with respect to S. aureus isolated from meat and meat products in India. Hence, the present study was designed with the objective to evaluate the prevalence of genes encoding antibiotic resistance for commonly used antibiotics in poultry production in S. aureus isolated from Chicken meat marketed in Chennai City.

Materials and Methods

The approval of the Institutional Biosafety Committee of Tamil Nadu Animal and Veterinary Sciences University, Chennai was obtained for conduct of the study. A total of 50 S. aureus isolated from retail Chicken meat marketed in Chennai, Tamil Nadu, India based on standard protocol (ISO standard 6888/1:1999) were used in the present study. The isolates were initially confirmed by biochemical test viz., catalase test, Mannitol fermentation, Coagulase and thermonuclease test as per standard protocol. The final confirmation was carried out based on PCR targeting nuc (thermonuclease) gene.

Polymerase Chain Reaction

The genomic DNA was extracted by using DNA extraction kit (Qiagen) and the primers were custom synthesized. The sequences of the primers used for gene amplification are presented in table 1. Multiplex Polymerase chain reaction (m-PCR) for the detection of 5 antibiotic resistance genes was performed according to the methods described by Strommenger et al., (2003). Briefly, amplification reactions were performed in a 25 μL mixture containing 12.5 μL of 2X PCR master mix (Amplicon, Denmark), 5pmol of each primers and 2 μL of DNA template and the final volume was adjusted to 25 μL by adding nuclease free water. Amplification reactions were performed using a DNA thermal cycler (Master Cycler Gradient, Eppendorf, Germany) with the following program: Initial denaturation at 94°C for 3 min was followed by 30 cycles of amplification with 94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 sand final extension for 5 minutes at 72°C. The PCR products were stained with 1% solution of ethidium bromide and visualized under UV light after gel electrophoresis on 2.0% agarose gel.

Results and Discussion

In the present study it was observed that of the 50 isolates screened all the isolates (100 per cent) carried either one of these resistance gene (Fig. 1). The PCR protocol followed amplified specific products as outlined by Strommenger et al., (2003). Among the various genes studied either alone or in combination 48 isolates (96 %) carried tetK gene and amplified 360 bp product and three isolates (6 %) carried tetM gene, amplifying 158 bp product. The tet genes confers resistance to tetracycline are contained within conjugative transposons that can be transferred horizontally and expressed in both Gram-positive and Gram-negative bacteria. The results of the present study are in concurrence with the findings of Schmitz et al., (2001) and Jones et al., (2006), who observed higher prevalence of tetK gene in
majority of the *S. aureus* isolates (60-100 %). In addition Schmitz *et al.*, (2001) opined that among the Methicillin sensitive isolates tet*K* gene was the most prevalent tetracycline resistance determinant whereas in methicillin resistant *S. aureus*, tet*M* was most frequent gene.

In the present study, 44 isolates (88 %) carried *aacA*-aph*D* gene and amplified 227 bp product and similarly Nakaminami *et al.*, (2008) also observed that *aacA*-aph*D* gene was the frequently detected resistance gene in both the MRSA (96.1 %) and MSSA (85.8 %) isolates in Japan. The *aacA*-aph*D*gene encodes resistance to gentamicin–tobramycin–kanamycin or kanamycin–neomycin (Rouch *et al.*, 1987).

Table.1 Primers used in this study

<table>
<thead>
<tr>
<th>Target Gene</th>
<th>Resistance phenotype</th>
<th>Primer sequence (5’-3’)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
</table>
| *aacA*-aph*D* | Gentamicin | TAA TCC AAG AGC AAT AAG GGC
GCC ACA CTA TCA TAA CCA CTA | 227 |
| *erm*(A) | Erythromycin, Clindamycin | AAG CGG TAA ACC CCT CTG A
TTC GCA AAT CCC TTC TCA AC | 190 |
| *erm*(C) | Erythromycin, Clindamycin | AAT CGT CAA TTC CTG CAT GT
TAA TCG TGG AAT ACG GGT TTG | 299 |
| tet*K* | Tetracycline | GTA GCG ACA ATA GGT AGT
GTA GTG ACA ATA AAC CTC CTA | 360 |
| tet*M* | Tetracycline | AGT GGA GCG ATT ACA GAA
CAT ATG TCC TGG CGT GTC TA | 158 |

Fig.1 PCR for amplification of Antibiotic Resistance Gene in *S. aureus* isolated from retail Chicken meat in Chennai (tet*K*- 360bp; *erm*(C)- 299 bp; *aacA*-aph*D*- 227 bp and tet*M*- 158 bp).

Macrolide resistance in *S. aureus* is mediated by one or more *erm* genes encoding a 23S rRNA methylase. In the present study it was evident that 43 isolates (86 %) carried *erm*(C) gene amplifying 299 bp product, and none of the isolates carried *erm*(A) gene. Similar expression of *erm*(C) gene has been documented by Nicola *et al.*, (1998) and Lina *et al.*, (1999). The results of the present study were contrary to the findings of Schmitz *et
al., (2000), who observed that the most prevalent gene was \textit{erm(A)} followed by \textit{erm(C)} in 67 and 23 per cent of the isolates respectively.

The present study clearly indicates that \textit{S. aureus} isolated from the chicken meat marketed in retail outlets of Chennai carries multiple antibiotic resistant genes that confer resistance to commonly used antibiotics in human and animal therapy like Gentamicin, tetracycline and erythromycin. Hence, control strategies with respect to hygiene need to be put in place to prevent the spread of these multidrug resistant pathogens to the consumers.

Acknowledgement

The author duly acknowledges the Dean and Department of Livestock Products Technology (Meat Science), Madras Veterinary College, TANUVAS, Chennai for providing facilities for conduct of the research.

References

How to cite this article: