Original Research Article

https://doi.org/10.20546/ijcmas.2017.612.029

Pathomorphological Studies of *Peste Des Petits Ruminants* (PPR) in Goats of Navsari and Valsad Districts, India

Yash R. Patel1*, Jignesh M. Patel1, Priti D. Vihol1, I.H. Kalyani2, Jayesh B. Solanki3 and Pratik P. Panchal1

1Department of Veterinary Pathology, Vanbandhu College of Veterinary Sciences and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India

2Department of Veterinary Microbiology, Vanbandhu College of Veterinary Sciences and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India

3Department of Veterinary Parasitology, Vanbandhu College of Veterinary Sciences and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India

*Corresponding author

Abstract

During the seroprevalence study of PPR a total 210 serum samples were collected from goats of Navsari and Valsad districts of South Gujarat. Out of them 99 samples were found positive for PPRV antibody by C-ELISA kit and these PPR positive goats put under continuous observations. Out of these 99 PPR positive goats, 15 goats were died which were consider as a suspected death due to PPR disease. Post mortem was performed in death animals and gross lesions were noted as well as tissue samples were collected in 10% neutral buffer formalin for histological study. Tissue samples were processed, slide were prepared and subjected to histological examination. Characteristics microscopic lesions like syncytial cell formation, infiltration of mononuclear cells and necrosis were observed in lung, intestine, spleen, kidney and liver tissue.

Keywords

C-ELISA, Goat, PPR, Pathomorphology.

Article Info

Accepted: 04 October 2017
Available Online: 10 December 2017

Introduction

Peste des petits ruminants (PPR) is an acute febrile viral disease of goat and sheep caused by RNA virus belonging to the genus *Morbillivirus* of *Paramyxoviridae* family (Gibbs et al., 1979). PPR is also known as kata, stomatitis-pneumoentritis complex, goat plaque and pseudo - rinderpest (Jubb et al., 2007). The disease is highly contagious causing varying degree of morbidity and mortality in susceptible animals (Radostits et al., 2007).

PPR virus is normally transmitted by aerosal route, but may also spread through direct contact by means of contaminated water/feed. Substantial quantities of virus are found in ocular, nasal or oral secretions in early stage of sick goats and in the faeces in late stage of disease (Abegunde and Abu, 1977). PPRV was serologically confirmed from Gujarat by Hinshu et al., (2001) followed by many researchers (Tiwari, 2004, Kanani et al., 2006, Nagraj, 2006, Balamurugan et al., 2011...
and Chandrahas et al., 2011). Recently, an outbreak of PPR was reported in Navsari and Valsad district of Gujarat (Sharma et al., 2015 and Thakor et al., 2016). Hence the present study was decided for pathomorphological study as well as use of latest techniques for diagnosis and detection of PPR antigen in-situ condition.

Materials and Methods

For pathomorphological study only those animals were taken into consideration which represented PPR infection in flock according to C-ELISA result. Out of 210 serum samples 99 samples were shown positivity for PPR antibody in C-ELISA. Out of these 99 PPR infected animals, 15 animals were dead and these dead animals were subjected to Postmortem examination. During postmortem examination gross pathological lesions were recorded if any. After recording the gross lesions the tissues from various organs (e.g. lung, liver, intestine, spleen, kidney, heart and trachea) were collected and subsequently preserved in 10% neutral buffered formalin for histopathological examination.

Following fixation, tissue samples were processed for histopathology by paraffin embedding technique as per standard protocol (Luna, 1968). The blocks of tissue were cut in to section of four to six microns thickness, the sections were stained by Harri’s Haematoxylin and Eosin staining method (Culling, 1969).

Results and Discussion

Gross examination of respiratory tract revealed frothy exudates and haemorrhages in tracheal mucosa (Figure 1). Varying degree of congestion, haemorrhages, red hepatization, emphysema and consolidation was observed in right lobe of lung (Figure 2) along with firm consistency. Whereas in intestine, hemorrhagic strips were found on mucosal surface of caecum (Figure 3) with raised nodules. Spleen revealed characteristics lesions of splenomegaly and edematous. Additionally, liver revealed haemorrhages on the surface, presence of serosengunious fluid was also noticed in pericardial sac of heart (Figure 4) and minor haemorrhages on cortico-medullary junction of kidney.

The morbid pathomorphological lesions in lungs, trachea, caecum, spleen, liver, heart and kidneys observed in this study were partly in agreement with previous report made by El-Yuguda et al., (2009), Al-Naeem et al., (2009), Zahur et al., (2009), Abd El-Rahim et al., (2010), Chauhan et al., (2011), Jagtap et al., (2012), Rosemary et al., (2013), Patel et al., (2015) and Ekambaram et al., (2015) in sheep and goat. The pneumonic lungs and hemorrhagic trachea probably due to descending upper respiratory infection of PPR complicated by secondary bacterial infection (Rosemary et al., 2013). Moreover, congestion and red hepatization of lung were probably suggestive of PPRV involvement (Kumar et al., 2004).

Most prominent histological changes were observed in lung, intestine, kidney, liver, spleen, lymph node and heart. Histopathological examination of lungs revealed alveolar dilatation, emphysema, thickening of alveolar septa, infiltration of mononuclear cells (Figure 5), eosinophilic intracytoplasmic inclusion body and interstitial pneumonia along with pink colour serous exudates. Presence of exudate in bronchioles, necrosis and shedding of bronchial epithelium (Figure 6) was also noted in present study. In trachea, degeneration and cystic lesions in tracheal gland (Figure 7) and infiltration of mononuclear inflammatory cells in tracheal sub-mucosa were observed. In intestine, necrosis of epithelium/crypts, haemorrhages
and infiltration of mononuclear cells into submucosa with severe loss of intestinal villi were common findings (Figure 8 and 9). Spleen and lymph node revealed haemorrhages and depletion of lymphoid cell in cortex and medullary cords. Liver shows lesions of degeneration, sinusoidal congestion and infiltration of mononuclear cells in the sinusoidal space along with syncytial cell. Whereas in kidney, degenerative changes accompanied by desquamation of epithelium lining of tubules, haemorrhages, mild glomerular atrophy and interstitial nephritis (Figure 10). While mild pathological changes were observed in heart like congestion, haemorrhages, degenerative changes, infiltration of mononuclear cells and focal area of necrosis.

Fig.1 Frothy exudates and hemorrhages in trachea

Fig.2 Congestion, hemorrhages, red hepatization and consolidation in right lobe of lung

Fig.3 Hemorrhagic strips in mucosal surface of caecum

Fig.4 Presence of serosengunious fluid (arrow) in pericardial sac of heart
Fig. 5 Lung, infiltration of mononuclear inflammatory cells in inter alveolar septa and alveoli lumen along with alveoli capillary congestion (H and E x 20)

Fig. 6 Lung, necrosis and shedding of bronchial epithelium (H and E x 20)

Fig. 7 Trachea, degeneration and cystic lesions in tracheal gland (H and E x 20)

Fig. 8 Intestine, hemorrhages in submucosa, blunting, necrosis and sloughing of intestine villi (H and E x 20)

Fig. 9 Intestine, infiltration of mononuclear inflammatory cells in submucosa of intestine (H and E x 20)

Fig. 10 Kidney, infiltration of mononuclear inflammatory cells in interstitial space (H and E x 20)
Histopathological examination of lungs revealed alveolar dilatation, emphysema and infiltration of mononuclear cells along with pink colour serous exudate which was shown similarity with the earlier observations of various researchers (Aktas et al., 2011; Jagtap et al., 2012; Patel et al., 2015 and Maina et al., 2015). Presence of syncytial cells and eosinophilic intracytoplasmic inclusion body in bronchial epithelium cells was supported by the earlier reports of Brown et al., (1991), Islam et al., (2001), Kumar et al., (2004), Toplu (2004), Kul et al., (2007) and Saglam and Temur (2009). Though interstitial pneumonia was evident and partially agreement with the findings of Kumar et al., (2004) and Kul et al., (2007). Presence of exudate in bronchi and hyperplasia of bronchial epithelium was noted in present study which was also same as the findings of Aktas et al., (2011) and Maina et al., (2015).

Necrosis of epithelium/crypts in intestine was also found by Kumar et al., (2004), Aktas et al., (2011) and Patel et al., (2015). Whereas haemorrhages and infiltration of mononuclear cells into submucosa were partially agreement with the report of Maina et al., (2015).

Loss of intestinal villi might be due to the epitheliotropic nature of PPR virus (Maina et al., 2015) may lead to necrosis of epithelium cells of villi.

According to present and earlier reports of Islam et al., (2001), Kul et al., (2007), Maina et al., (2015) and Patel et al., (2015) lymphoid cell depletion was observed in cortex and medullary cords of spleen and lymph node. It might be due to the severe lymphocytolysis in lymphoid tissues by PPR virus (Kul et al., 2007). In agreement with the present findings Aktas et al., (2011) and Madboli and Ali (2012) also reported degeneration and infiltration of mononuclear cells in the sinusoidal space in liver.

Histopathological lesions of kidney included degenerative changes, desquamation of epithelium lining of tubules, interstitial nephritis and mild glomerular atrophy were partly in accordance with the observations of Jagtap et al., (2012) and Patel et al., (2015). Further, in present study histopathological changes of heart included congestion, haemorrhages, degenerative changes and focal area of necrosis were supported by the observation of Jagtap et al., (2012). Although the type of lesions was more or less similar in all the animals, there was variations in the severity and involvement of the organs.

Acknowledgements

The authors are highly thankful to the Dean and Principal for providing facilities and fund. Authors also wish to thank Dr. I. H. Kalyani, Associate Professor and Head, Department of Veterinary Microbiology and Dr. J. M. Patel, Assistant Professor, Department of Veterinary Pathology, Vanbandhu College of Veterinary science and Animal Husbandry, Navsari Agricultural University, Navsari, Gujarat, India for extra support and their guidance in screening tissue samples.

References

How to cite this article:

doi: https://doi.org/10.20546/ijcemas.2017.612.029