Original Research Article

Nutritional and Neutraceutical Components of Minor Tubers

Sonal S. Aigal*, Pushpa Bharati and Divya P. Mesta

Department of Food Science and Nutrition, College of Community Science, University of Agricultural Sciences, Dharwad, Karnataka, India

*Corresponding author

ABSTRACT

Roots and tubers provide a substantial part of the world's food supply and are also an important source of animal feed. They are rich in energy, dietary fibre, minerals and antioxidants. A study was conducted to evaluate the neutraceutical components present in 5 types of minor tubers. Significant difference was observed among minor tubers for proximate, carbohydrate, and neutraceutical components. The protein, fat, carbohydrate, starch and energy content of the tubers ranged from 4.14 to 8.73 g, 0.07 to 0.67 g, 76.92 to 85.56 g, 33.97 to 69.18 g and 349 to 368 kcal per 100 g of sample respectively on dry weight basis. Estimated glycemic index of the tubers varied from 53.33 to 73.74. In vitro protein digestibility of the tubers ranged from 87.47 to 95.13, while polyphenols, tannins and antioxidant activity ranged from 87.04 to 245.5, 2.29 to 6.54 and 6.18 to 15.17%, respectively.

Keywords
Minor tubers, Nutrient, Antioxidant.

Introduction

Tuber crops are the third important food crops after cereals and legumes and are either a staple or subsidiary food for about one-fifth of the world population. The tubers are consumed by only a segment of the population hence can be called underutilized crops. Cassava, sweet potato, yams, taro, aroids and tannia are the important root and tuber crops produced globally. India holds a rich genetic diversity of tropical root and tuber crops viz. cassava, sweet potato, aroids, yams and several minor tuber crops. The Indo-Burma region is the centre of origin of taro and Asiatic edible yams. Most of the root and tuber crops are rich in energy, minerals, vitamins, antioxidants and dietary fibre. They may play an important role in mitigating hidden hunger through diet diversification and have proved to be life sustaining crops in times of natural calamities and famine.

Taro (arvi), elephant foot yam (jimikand), and yams are grown as vegetable crops in homestead or in semi-commercial scale throughout India. Most of them are reservoirs of resistant starch, minerals, vitamins, antioxidants, and dietary fibers. Tuber crops not only enrich the diet of the people but also possess medicinal properties to cure many ailments or check their incidence. Many tropical tuber crops are used in the preparation of stimulants, tonics, carminatives
and expectorants. These crops possess medicinal properties to treat many ailments viz., piles, diarrhea, vomiting, rheumatism, headache, epilepsy, leprosy, ulcers, jaundice and dysentery. Mucilage extracted from various tubers and roots has been reported to possess angiotensin converting enzyme inhibitory (Lee et al., 2003) and antioxidative activities (Nagai et al., 2006).

Hence the present study was undertaken with objective to estimate the nutrient composition and antioxidant properties of the selected minor tubers.

Materials and Methods

The minor tubers procured from the farmers of Joida taluk, Uttar Kannada district were washed and cleaned. The fresh sample was peeled and sliced into 1.2 mm thickness and dried in hot air oven at 40±2°C till constant weight was attained. The dried slices were powdered and stored under refrigerated condition for chemical analysis. Chemical analysis for the nutrients namely moisture, fat and ash was carried out following the procedures of AOAC (Anon, 2005), protein by micro-Kjeldahl method using Kel Plus (Pelican model).

Carbohydrate was computed by difference method. The total and reducing sugars were determined as per Nelson-Somogyi’s procedure. Glucose value was multiplied by 0.9 to convert into starch value (McCready et al., 1993). All analyses were carried out in triplicates. In vitro starch and protein digestibilities (Moulishwar et al., 1993), estimated glycemic index (Goni et al., 1997), tannins (Schander, 1970), polyphenols (Anon, 2000) and antioxidant activity (DPPH method) of the selected tubers were analyzed. The results were subjected to statistical analysis (one-way analysis of variance and F-test) using SPSS software (version 16.0).

Results and Discussion

Carbohydrate profile including reducing sugar, non-reducing sugar, total sugar and starch, varied significantly and is narrated in Table 2. Total sugar was significantly higher in banda type of Colocasia (11.16 %), Significantly lower total sugars was recorded in Greater yam- lion foot type (1.31 %) and
was on par Greater yam- lion foot type, Greater yam- bunch type, Lesser yam. Reducing sugar was significantly higher in Colocasia banda type (3.27 %).

Non reducing sugar was significantly higher in banda type of Colocasia (7.50 %). *In vitro* starch digestibility and estimated glycemic index of the tubers were indicated in figure 1 and 3. The starch digestibility of the tubers was found to be high at 30 min and decreased sharply at 90 min. significant difference was found among the tubers. It was found that the estimated glycemic index was lowest in Colocasia banda type tuber (53.33) followed by greater yam-wild edible type (57.51).

Table 1 Proximate composition of minor tubers

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Tuber</th>
<th>Moisture</th>
<th>Protein</th>
<th>Fat</th>
<th>Ash</th>
<th>CHO</th>
<th>Energy (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>G.Y. (lion foot type/white yam)</td>
<td>65.58 ± 1.24</td>
<td>7.03 ± 0.96</td>
<td>0.32 ± 0.03</td>
<td>3.36 ± 0.01</td>
<td>83.44 ± 1.04</td>
<td>75.64 ± 1.20</td>
</tr>
<tr>
<td>2.</td>
<td>G.Y. (wild edible type)</td>
<td>70.50 ± 1.18</td>
<td>6.96 ± 0.16</td>
<td>0.25 ± 0.00</td>
<td>3.55 ± 0.04</td>
<td>82.93 ± 0.10</td>
<td>73.53 ± 0.92</td>
</tr>
<tr>
<td>3.</td>
<td>Lesser yam</td>
<td>68.42 ± 0.94</td>
<td>7.06 ± 0.19</td>
<td>0.22 ± 0.03</td>
<td>3.53 ± 0.06</td>
<td>83.06 ± 0.33</td>
<td>72.86 ± 0.36</td>
</tr>
<tr>
<td>4.</td>
<td>Colocasia (banda type)</td>
<td>68.29 ± 1.05</td>
<td>4.14 ± 0.22</td>
<td>0.40 ± 0.10</td>
<td>6.10 ± 0.13</td>
<td>83.53 ± 0.06</td>
<td>71.93 ± 0.87</td>
</tr>
<tr>
<td>5.</td>
<td>Tannia bulbs</td>
<td>85.52 ± 1.20</td>
<td>4.43 ± 0.22</td>
<td>0.32 ± 0.13</td>
<td>5.95 ± 0.08</td>
<td>82.06 ± 0.06</td>
<td>70.66 ± 0.87</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>70.45 ± 5.93</td>
<td>6.58 ± 1.60</td>
<td>0.42 ± 0.10</td>
<td>4.34 ± 1.27</td>
<td>82.16 ± 2.32</td>
<td>72.52 ± 2.82</td>
</tr>
</tbody>
</table>

F-value 90.93, S. Em. ± 0.63, C. D. @ 1 % 2.46**

Note: G.Y. - Greater yam; **Significant @ 0.01 level, NS - Non-significant

Table 2 Carbohydrate profile of minor tubers

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Tuber</th>
<th>Reducing sugar</th>
<th>Non reducing sugar</th>
<th>Total sugar</th>
<th>Starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>G.Y. (lion foot type/white yam)</td>
<td>0.48 ± 0.20</td>
<td>0.79 ± 0.28</td>
<td>1.31 ± 0.10</td>
<td>62.73 ± 3.16</td>
</tr>
<tr>
<td>2.</td>
<td>G.Y. (wild edible type)</td>
<td>1.95 ± 0.04</td>
<td>0.92 ± 0.20</td>
<td>2.92 ± 0.17</td>
<td>60.38 ± 1.31</td>
</tr>
<tr>
<td>3.</td>
<td>Lesser yam</td>
<td>0.51 ± 0.07</td>
<td>1.07 ± 0.04</td>
<td>1.64 ± 0.11</td>
<td>60.36 ± 4.80</td>
</tr>
<tr>
<td>4.</td>
<td>Colocasia (banda type)</td>
<td>3.27 ± 0.04</td>
<td>7.50 ± 0.55</td>
<td>11.16 ± 0.62</td>
<td>52.55 ± 0.05</td>
</tr>
<tr>
<td>5.</td>
<td>Tannia bulbs</td>
<td>0.63 ± 0.07</td>
<td>1.62 ± 0.36</td>
<td>2.34 ± 0.31</td>
<td>51.65 ± 6.33</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td></td>
<td>1.63 ± 1.18</td>
<td>2.18 ± 2.11</td>
<td>10.28 ± 3.15</td>
<td>51.16 ± 11.32</td>
</tr>
</tbody>
</table>

F-value 152.53, S. Em. ± 0.10, C. D. @ 1 % 0.41**

Note: G.Y. - Greater yam; **Significant @ 0.01 level, NS - Non-significant
Table 3 Neutraceutical properties of the tubers

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Tubers</th>
<th>Polyphenols (mg GAE/g)</th>
<th>Tannins (mg/g)</th>
<th>% DPPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G. yam (wild edible type)</td>
<td>87.04 ± 1.87</td>
<td>2.29 ±0.057</td>
<td>11.68 ±0.26</td>
</tr>
<tr>
<td>2</td>
<td>Tannia bulbs</td>
<td>104.03 ±11.02</td>
<td>2.37 ± 0.024</td>
<td>15.97 ± 0.30</td>
</tr>
<tr>
<td>3</td>
<td>Lesser yam</td>
<td>96.23 ±4.46</td>
<td>3.05 ± 0.004</td>
<td>6.18 ± 0.48</td>
</tr>
<tr>
<td>4</td>
<td>G. yam (lion foot type)</td>
<td>245.5 ± 5.23</td>
<td>6.54 ± 0.077</td>
<td>6.33 ± 0.21</td>
</tr>
<tr>
<td>5</td>
<td>Colocassia banda type</td>
<td>207.84 ± 1.11</td>
<td>4.27 ± 0.011</td>
<td>7.59 ± 0.03</td>
</tr>
<tr>
<td>Mean±SD</td>
<td></td>
<td>148.1 ± 67.9</td>
<td>3.71 ± 1.68</td>
<td>9.55 ± 3.98</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>462.3</td>
<td>3162</td>
<td>832.3</td>
</tr>
<tr>
<td>S. Em. ±</td>
<td></td>
<td>3.402</td>
<td>0.031</td>
<td>0.146</td>
</tr>
<tr>
<td>CD @ 1%</td>
<td></td>
<td>10.72**</td>
<td>0.11*</td>
<td>0.53*</td>
</tr>
</tbody>
</table>

** - Significant at 0.01 level

Fig. 1 In vitro starch digestibility of the minor tubers

Fig. 2 In vitro protein digestibility of minor tubers
Fig.3 Estimated Glycemic Index (EGI) of minor tubers

The *in vitro* protein digestibility of tubers presented in figure 2 indicated that the protein digestibility was significantly higher among all the tubers. Greater yam (wild edible type) had the highest digestibility (95.13%) followed by lesser yam (94.12), greater yam (lion foot type- 93.62), while lower digestibility was exhibited in Colocasia banda type (87.47).

Neutraceutical properties in terms of polyphenols, tannins and DPPH antioxidant activity is given in Table 3. Results indicated that the greater yam (lion foot type) exhibited highest polyphenols and tannin content of 245.5 mg GAE/g and 6.54 mg/g respectively. Highest antioxidant activity was exhibited in tannia bulbs (15.97%) followed by wild edible type of greater yam (11.68%). The results are in agreement with study of Chandrasekara and Kumar, (2016)

Tubers are reported to possess a good source of starch, high protein digestibility, medium glycemic index, phyto-chemicals and other nutrients. Processing helps to enhance the acceptance of the tubers. Converting these tubers into other value added products may add to the best utilization of tubers as functional and health foods. Thus improves the income of farmers by lowering the post-harvest losses.

Acknowledgement

The authors are grateful to University of Agricultural Sciences, Dharwad, under SRP (STAFF RESEARCH PROJECT) for providing the financial support to carry out the research.

References

Owuananam, C. I., Iwuoha, C. I., Onuegbu, N. C., Ogueke, C. C. and Nwosu, J. N., 2013, Quality characteristics of processed flours from Trifoliate yam
(Dioscorea dumentorum) as influenced by steeping and boiling in varying concentration of trona solution over time. *American J. Food Tech.*, 8(3): 162-172

How to cite this article: