Isolation and Antibiogram of Nonfermentative Gram Negative Bacilli in various Clinical Specimens in a Tertiary Care Hospital, Jaipur, India

Jitendra1, Shiv Kumar1*, Sheetal Sharma2, Jogender1 and Suman Rishi1

1Department of Microbiology, NIMS Medical College, Jaipur, Rajasthan, India
2Department of Microbiology, Pacific Medical College, Udaipur, Rajasthan, India
*Corresponding author

A B S T R A C T

Non Fermentative Gram Negative Bacilli were regarded to be Nonpathogenic and Contaminants in the past. Recently these bacilli became impending pathogenic with the ability to show resistance for commonly used antibiotics. These organisms isolated from clinical specimens with increasing frequency. So this study planned to isolate and antibiogram of Non-fermentative gram negative bacilli in various clinical specimens at tertiary care hospital at Jaipur. The present study was carried out on 49 of strains of Nonfermenters isolated from 397 non repetitive clinical samples like Pus, Wound discharge, Blood culture, Urine, Sputum, Ear discharge, Body fluid, ET Secretions and CSF etc. from all age’s group. Conventional bacteriological methods were used for identification non fermenting gram negative bacilli and susceptibility testing was performed with the help of the Modified Kirby-Bauer disc diffusion method. This study comprises of 49 isolates of Non Fermentative Gram Negative Bacilli from total of 397 clinical specimens, collected from in-patients admitted to various departments during a period of 6 months. Pseudomonas aeruginosa was the most common isolate (57.14%) while Acinetobacter baumannii (24.48%) was the second most common isolated followed by Pseudomonas fluorescens (14.28%) and Acinetobacter Iwoffii (4.08%). Among all clinical samples Pus yield maximum isolates of NFGNB i.e. 15(30.61%) followed by same account of Urine 8(16.32%) and Sputum 8(16.32%). Most sensitive drug against NFGNB were Polymyxin-B (100%) and Colistin (100%) followed by Imipenem (81.63%), Amikacin (71.42%). Pseudomonas aeruginosa and Acinetobacter baumannii have emerged as the most common Nonfermentative gram negative bacilli causing human infections. Alarming resistance rate was found towards commonly used antibiotics. Polymyxin B and Colistin showed excellent susceptibility against such bacteria followed by Imipenem and amikacin.

Keywords

Keywords

Article Info
Accepted: 12 October 2017
Available Online: 10 December 2017

Introduction

Nonfermenters are group of bacteria that are aerobic, non sporing, gram negative rod shaped bacilli and do not utilize carbohydrates as source of energy or degrade them by various metabolic pathways other than fermentation. These organisms although frequently considered to be commensals or contaminants, but the pathogenic potential of these organisms has been established beyond doubt because of their frequent isolation from clinical specimens and their association with the disease (Koneman et al., 2006).
We encounter many problems with these organisms because they are invariably resistant to common disinfectants like as chlorhexidine and quaternary ammonium compounds and now a day they account approximate 15% of all bacterial isolates of any clinical laboratory (Malini et al., 2009).

Various organisms are present in these groups like *Pseudomonas, Acinetobacter, Alkaligenes, Burkholderia, Moraxella, Stenotrophomonas, Flavobacter, Oligella, Flavimonas* etc. (Meharwal et al., 2002).

Pseudomonas aeruginosa is a common inhabitant of soil and moist environments (Minhas Akbar et al., 2014; Ronald et al., 1969). In hospitals, *Pseudomonas Aeruginosa* can be isolated from a variety of sources, including respiratory therapy equipments, antiseptics, soap, sinks, mops, medicines, physiotherapy equipment and hydrotherapy pools (Pollack et al., 1995).

Data from more recent studies continue to show *Pseudomonas aeruginosa* as the second most common cause of nosocomical pneumonia, health care associated pneumonia and ventilator associated pneumonia (Gaynes et al., 2005; Kollef et al., 2005).

Acinetobacter species are ubiquitous in nature and have been found on or in soil, water, animals and humans. *Acinetobacter baumannii* is known to be recoverable from the skin, throat and rectum of humans and has been reported to be a healthcare-acquired colonizer of the respiratory tract. According to the Centre for Disease Control and Prevention (CDC), the species *A. baumannii* accounts for nearly 80% of reported *Acinetobacter* infections. This prolonged survival in the healthcare environment along with multidrug resistance, colonization potential, and contact transmission (hands, instruments, equipment) are some of the challenging factors in *Acinetobacter* prevention and control (An APIC guide, 2010).

Members of the genus *Acinetobacter* usually invade compromised hosts and are seen in patients who have undergone endotracheal intubation, peritoneal dialysis, or central venous catheterization (Kiran Chawla et al., 2013).

Pseudomonas aeruginosa and *Acinetobacter* species in particular are most often associated with carbapenem resistance. Carbapenem resistance appears to be due to metallo-β-Lactamase.

Excessive and indiscriminate used of broad spectrum antibiotics also responsible for antibiotic resistance (Mehta et al., 2007). Patients become susceptible to non fermentive bacterial infections after abusive use of wide spectrum antimicrobial agents, prolonged treatment with immunosuppressive drugs, prolonged hospital stay, inadequate mechanical instruments like tracheostomy, catheterization, in case of burns, low birth weight babies or radiation (Gerard et al., 1991).

The prevalence and rates of resistance in these organisms to available antimicrobials are increasing of particular concern is their resistance to β-lactams antibiotics, which is usually mediated by β-lactamase production. Widespread use of extended spectrum β-lactams antibiotics has resulted in the formation of potent enzymes that are able to inactivate many of the new generation of antimicrobial agents.

Extended spectrum β-lactamase (ESBL) are enzymes with the ability to hydrolyze the extended spectrum Cephalosporins, such as Cefotaxime, Ceftazidime and Cefoperazone. (Shahla Mansouri et al., 2012).
Due to increasing frequency as isolation and increasing resistance against various antibiotics, it is important to know prevalence and antibiogram of Nonfermentive gram negative bacilli in hospital settings.

Materials and Methods

This Descriptive cross sectional study was carried out in the Bacteriology Department of Microbiology of National Institute of Medical Sciences (NIMS) University, Jaipur, District-Jaipur, Rajasthan, India for a period of six months (January 2017 to June 2017).

A total of 397 clinical specimens were found culture positive in the laboratory during the study period.

The organisms isolated and identified provisionally as NFGNB (n=49) were identified further by using a standard protocol for identification. (Koneman et al., 2006).

All Non-repetitive isolates of NFGNB were collected from various clinical Specimens like Pus, Wound discharge, Blood culture, Urine, Sputum, Ear discharge, Body fluid, ET Secretions and CSF etc from Patients of all age group and both sex attending OPD, IPD, ICU and Wards in hospital, during the study period. Isolation of various isolates was confirmed by several of test like colony characters, morphology (Gram’s stain), pigment production, motility (by hanging drop) and other biochemical tests like Catalase, Oxidase test, Indole, Methyl red, Voges Proskauer, Citrate utilization test, Urease test and Triple sugar iron Test, Oxidation/fermentation for glucose, lactose, xylose, mannitol and maltose (Hugh and Leifson’s media), Lysine and Ornithine decarboxylase and Arginine dihydrolase activity, ONPG test, Esculin test etc. were done for isolation of the non-fermentative Gram negative bacilli.

Antimicrobial susceptibility

Antibiotic susceptibility testing was done by Modified Kirby Bauer’s disc diffusion method as per CLSI guidelines 2017 using commercially available discs. Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as control strains.

Results and Discussion

A total 49 strains of nonfermenters were isolated from 397 various non-repetitive various clinical samples. Incidence of nonfermentative gram negative bacilli isolates from clinical samples was 12.34%.

Pseudomonas aeruginosa was the most common isolate (57.14%) while Acinetobacter baumannii (24.48%) was the second most common isolated followed by Pseudomonas fluorescens (14.28%) and Acinetobacter lwoffii (4.08%).

Out of total 397 samples 226 (56.92 %) samples from Male while 171 (43.07 %) from Female Patient.

Out of total 397 samples, maximum from age group between 21-30 years i.e. 23.17 % while minimum from <10 years of age i.e. 7.30 %.

The present had maximum Urine samples (38.03%), followed by Pus (21.66%), Sputum (10.07%), High vaginal swab (4.78%), ET secretion (4.28%), CSF (4.03%) Ear swab (3.77%), Pleural fluid (3.52%), Blood (2.77%), Catheter tip (01%), Semen (1%), Nasal swab (0.5%), Ascetic fluid (0.25%) and Bile fluid (0.25%) (Fig. 1).

Maximum samples of over study were sterile (44.33%). Gram Positive Cocci (25%) predominantly isolated in our study, followed by Gram negative bacilli other than NF GNB
(13%), NF GNB (12.34%), Normal flora (4%) and Candida species (2%) (Fig. 2).

Maximum Nonfermentive GNB isolated from Pus sample (15) followed by same amount of Urine (8) and Sputum (8), Ear swab (6), ET secretion (5), Blood (3) and (1) each from Catheter tip and Bile fluid (Table 1).

Out of 28 isolate of *Pseudomonas aeruginosa*, 25 (89.28%) isolates producing Blue-Green pigment (Pyocyanin), 1 (3.57%) was Non-pigmented, 2 (7.14%) isolates producing Brown Red pigment (Pyomelanin) (Fig. 3 and 4).

Antibiotic sensitivity testing results

Out of 49 isolates of NFGNB were processed for Antibiotic susceptibility testing was done by Modified Kirby Bauer’s disc diffusion method as per CLSI guidelines 2017 using commercially available discs.

The antimicrobial sensitivity testing of isolated NFGNB as a pathogen showed that 100% of *P. aeruginosa* were sensitive to Polymyxin B and Colistin, 86% were sensitive to Imipenem, 75% were sensitive to Amikacin, 61% were sensitive to Ceftazidine-Clavulanate, 57% for Gentamicin and Piperacillin- Tazobactum, 53% for Cefepime, Ciprofloxacin and Meropenem. 50% sensitive to Ceftazidine and Aztreonam. 43% sensitive to Tobramycin. 39% sensitive to Cefotaxime. 36% sensitive to Ticarcillin and Piperacillin. 25% sensitive to Ceftriaxone 14% sensitive to Cotrimoxazole. 4% sensitive to Amoxyclav. (Table 2 and Fig. 5).

While the second most isolated NFGNB, *A. baumannii* showed highest sensitivity 100% sensitive to Polymyxin B and Colistin, 67% were sensitive to Imipenem, 59% were sensitive to Amikacin, 42% were sensitive to Ceftazidine-Clavulanate, Aztreonam and Meropenem 34% for Gentamicin and Piperacillin- Tazobactum, Ceftriaxone, Tobramycin, Cotrimoxazole. 26% sensitive for Cefepime, Ceftazidine. 25% sensitive to Piperacillin. 17% sensitive to Ticarcillin, Ciprofloxacin and Cefotaxime, 8% sensitive to Amoxyclav.

While *Pseudomonas fluorescens* and *Acinetobacter lwoffii* showed 100% sensitivity to Polymyxin B and Colistin and total resistance to Amoxyclav.

Demographic profile of patients included in study

In our study higher samples were received in the age group of 21-30 years (23.17%) with over all preponderance of males (56.92%). This observations were compatible with study done by Jayapriya Sukumaran et al., (2014).

Isolation of non-fermenters GNB

Among the diverse Clinical Specimens, in our study, the NFGNB were predominant in Pus samples (30.61%) followed by Sputum (16.32%) and Urine (16.32%). These result comparable with the study done by Kamalraj et al., (2015), Dipak Bhargava et al., (2015), Malini et al., (2009). However, NFGNB predominantly reported in Ear Swabs (36%) by Aamal et al., (2016).

Non fermenting Gram negative bacilli considered to be contaminants in the past have now emerged as important major pathogenic organisms. Previous studies reported varied isolation rates of NFGNB. In our study, isolation rate of NFGNB was 12.34%, which is in agreement with the study conducted by Hariom Sharan et al., (2016) where the isolation rate was 13.82%. Our study is not in agreement with the studies.
conducted by Sidhu et al., (2010) (45.9%) and Vijaya et al., (2000) 21.80% where very high isolation rate was reported. However, studies conducted by Malini et al., (2009) and Bruno et al., (2011) showed very low isolation rate of 4.5% and 2.18% respectively.

Table 1: Distribution of NF GNB species in various clinical samples

<table>
<thead>
<tr>
<th>NF GNB Species</th>
<th>Urine</th>
<th>Sputum</th>
<th>Pus</th>
<th>ET</th>
<th>Ear Swab</th>
<th>Blood</th>
<th>Catheter tip</th>
<th>Bile Fluid</th>
<th>Total (n=49)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>57.14</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>24.48</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>14.28</td>
</tr>
<tr>
<td>Acinetobacter lwoffii</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4.08</td>
</tr>
</tbody>
</table>

Table 2: Species wise antibiotic susceptibility pattern of nonfermentative Gram negative bacilli

<table>
<thead>
<tr>
<th>Name of the antibiotic</th>
<th>Pseudomonas aeruginosa (n=28)</th>
<th>Acinetobacter baumannii (n=12)</th>
<th>Pseudomonas fluorescens (n=7)</th>
<th>Acinetobacter lwoffii (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of isolates %</td>
<td>No. of isolates %</td>
<td>No. of isolates %</td>
<td>No. of isolates %</td>
</tr>
<tr>
<td>Amoxyclav</td>
<td>1 3.57</td>
<td>1 8.33</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>10 35.71</td>
<td>2 16.66</td>
<td>2 28.57</td>
<td>1 50</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>10 35.71</td>
<td>3 25</td>
<td>2 28.57</td>
<td>1 50</td>
</tr>
<tr>
<td>Piperacillin-Tazobactum</td>
<td>16 57.14</td>
<td>4 33.33</td>
<td>3 42.85</td>
<td>2 100</td>
</tr>
<tr>
<td>Cefepime</td>
<td>15 53.57</td>
<td>3 26</td>
<td>2 28.57</td>
<td>1 50</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>11 39.28</td>
<td>2 16.66</td>
<td>2 28.57</td>
<td>0 0</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>7 25</td>
<td>4 33.33</td>
<td>2 28.57</td>
<td>2 100</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>14 50</td>
<td>3 26</td>
<td>3 42.85</td>
<td>1 50</td>
</tr>
<tr>
<td>Ceftazidime-Clavulanate</td>
<td>17 60.71</td>
<td>5 41.66</td>
<td>4 57.14</td>
<td>2 100</td>
</tr>
<tr>
<td>Amikacin</td>
<td>21 75</td>
<td>7 58.33</td>
<td>6 85.71</td>
<td>1 50</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>16 57.14</td>
<td>4 33.33</td>
<td>4 57.14</td>
<td>2 100</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>12 42.85</td>
<td>4 33.33</td>
<td>2 28.57</td>
<td>0 0</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>15 53.57</td>
<td>2 16.66</td>
<td>3 42.85</td>
<td>0 0</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>14 50</td>
<td>5 41.66</td>
<td>3 42.85</td>
<td>1 50</td>
</tr>
<tr>
<td>Imipenem</td>
<td>24 85.71</td>
<td>8 66.66</td>
<td>6 85.71</td>
<td>2 100</td>
</tr>
<tr>
<td>Meropenem</td>
<td>15 53.57</td>
<td>5 41.66</td>
<td>4 57.14</td>
<td>2 100</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>4 14.28</td>
<td>4 33.33</td>
<td>1 14.28</td>
<td>1 50</td>
</tr>
<tr>
<td>Polymyxin- B</td>
<td>28 100</td>
<td>12 100</td>
<td>7 100</td>
<td>2 100</td>
</tr>
<tr>
<td>Colistin</td>
<td>28 100</td>
<td>12 100</td>
<td>7 100</td>
<td>2 100</td>
</tr>
</tbody>
</table>
Fig. No. 3: Percentage wise Distribution of Pigment producing
Pseudomonas aeruginosa

Fig. 4 Antibiotic sensitivity pattern of Pseudomonas aeruginosa showing pyomelanin pigment
Fig. No. 5: Rate of Antibiotic Sensitivity Pattern in Nonfermentative Gram Negative Bacilli
Pseudomonas aeruginosa was found to be commonest nonfermenter in previous studies followed by Acinetobacter baumannii and this is in concordance to our results.

In the present study the most common NFGNB isolate was Pseudomonas aeruginosa 57.14%. This result has correlated well with the study conducted by Malini et al., (2009) reported 64.4% while Arora et al., (2010) reported 72.83%, Vijaya et al., (2000) reported 78.94% while Juyal et al., (2013) reported a low isolation rate of 38.21% Pseudomonas aeruginosa. The variation is likely due to number and type of clinical samples and geographical area of the study.

In the present study the second commonest isolate was Acinetobacter baumannii 24.48%. The result correlated well with the study conducted by Malini et al., (2009) reported 25.3%. However, Juyal et al., (2013) reported 29.27% in their study while Arora et al., (2010) reported 8.4%. The variation is likely due to number and type of clinical samples and geographical area of the study.

Majority of Pseudomonas aeruginosa (32.14%) were isolated from pus specimens. This is comparable with the study conducted by Hariom Sharan et al., (2016) who reported 26.32% isolation rate of Pseudomonas aeruginosa from Pus samples as dominant pathogen. However Dipak Bhargava et al., (2015) reported 43.9% Pseudomonas aeruginosa from Pus samples.

In our study, majority of Acinetobacter baumannii were from Pus and Urine specimen (25% each). This is similar to study done by Kamalraj et al., (2015)

However Sundaram Mohan et al., (2016) reported 56.52% Acinetobacter baumannii from Respiratory Specimens such as Endotracheal Tube and Sputum.

In Present Study, Isolation rate of Pseudomonas fluorescens was 14.28% and nearby isolation rate reported by Dipak Bhargava et al., (2015). However Jayapriya Sukumaran et al., (2014) reported only 2.6% Pseudomonas species.

Isolation rate of Acinetobacter Iwoffii in our study was 4.08%. Similar isolation rate reported by Dipak Bhargava et al., (2015) 3.6%.

Different types of pigments are produced by nonfermenters, which are helpful in making their species identification e.g. Pseudomonas, Roseomonas, Stenotrophomonas maltophilia etc. Pseudomonas aeruginosa produces Pyocyanin pigment in 90-96% of strains.

In our study out of 28 isolate of Pseudomonas aeruginosa, 25(89.28%) isolates producing blue green pigment (pyocyanin), similar observation was made in a study of Gokale et al., (2012) that showed 94% of Pseudomonas aeruginosa isolates produced Pyocyanin pigment.

Antibiotic sensitivity and resistance of non fermenters GNB

In present study Pseudomonas aeruginosa showed 100% sensitivity to Polymyxin B and Colistin. This result is in concordance to study done by Hariom Sharan et al., (2016). However Vikas Jain et al., (2015) reported 71.43% sensitivity to Colistin and 78.57% sensitivity to Polymyxin B.

After Polymyxin B and Colistin Pseudomonas aeruginosa was highly sensitive to Imipenem (85.71%). It correlates well with the work of Kamalraj et al., (2015) and Vikas Jain et al., (2015) where sensitivity to imipenem was 88.4% and 78.57%, respectively. However, only 58.26% sensitivity reported against imipenem by Syed Hussain et al., (2015).
Pseudomonas aeruginosa was 75% sensitive to Amikacin in our observation. Which is very similar to study done by Hariom Sharan et al., (2016) where sensitivity to amikacin was 80%. But Vikas Jain et al., (2015) reported only 50.00% sensitivity to Amikacin.

In present study, Very low sensitivity was present for Amoxyclav (3.57%) and Cotrimoxazole (14.28%). However Vikas Jain et al., (2015) reported 50.00% sensitivity to Amoxyclav and Hariom Sharan et al., (2016) reported 28% sensitivity to Cotrimoxazole.

Acinetobacter baumannii and **Pseudomonas aeruginosa** showed 100% sensitivity to Polymyxin B and Colistin. This result is in concordance to study done by Syed Hussain et al., (2015). However Vikas Jain et al., (2015) reported 80.00% sensitivity to both Colistin and Polymyxin B. In our study, **Acinetobacter baumannii** showed very low sensitivity against amoxyclav (8.33%), ticarcillin (16.66%), cefotaxime (16.66%) and ciprofloxacin (16.66%). Similar results had given by Hariom Sharan et al., (2016) Sundaram Mohan et al., (2016) and Syed Hussain et al., (2015). However Kamalraj et al., (2015) reported 66.66% sensitivity against Cefotaxime and 25% sensitivity to Amoxyclav.

In our study, other isolates were **Pseudomonas fluorescens** and **Acinetobacter lwofffii**. In them **Pseudomonas fluorescens** was 100% sensitivity to Polymyxin B and Colistin. This result is in concordance to study done by Hariom Sharan et al., (2016). **Pseudomonas fluorescens** was totally resistant to Amoxyclav and had very low sensitivity against Cotrimoxazole. It correlates well with the work of Hariom Sharan et al., (2016).

Acinetobacter lwofffii was very few to determine the antibiotic sensitivity. In present study over all Nonfermentive Gram Negative Bacilli was highly sensitive to Polymyxin B and Colistin (100%). This result is in concordance to study done by Hariom Sharan et al., (2016).

Nonfermentive Gram Negative Bacilli showed high resistance to Amoxyclav (95.91%) and Cotrimoxazole (79.59%) in present study. Our result is comparable to Hariom Sharan et al., (2016) and Sundaram Mohan et al., (2016) However Vikas Jain et al., (2015) reported less resistance to Amoxyclav as (52. 52%).

Acknowledgement

The authors are thankful to the Department of Microbiology of National institute of medical sciences (NIMS) Medical College, Jaipur (Raj.) for providing necessary laboratory facilities to carry out this work.

References

How to cite this article: