Prevalence of Enteropathogenic Escherichia coli in Maize (Zea mays) or Millet (Pennicetum glaucum) Flours and Porridges

D. Kouame N’zebo1*, A. Dadie1, O.L. Anin-Atchibri3, N. Kouassi2 and K.M. Dje1

1Department of Food Science and Technology, Laboratory of Biotechnology and Food Microbiology, University of Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
2Laboratory of Molecular pathology and biotechnology / National Center of Agronomic Research, Abidjan, Côte d’Ivoire,
3Department of Food Science and Technology, Laboratory of Nutrition and Food security, University of Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire

*Corresponding author

Abstract

Enteropathogenic Escherichia coli (EPEC) was a leading cause of infantile diarrhea in many countries. But this bacteria had never research in flours and porridges consume by infant in Côte d'Ivoire. The aim of this study was to determine the prevalence of EPEC in maize and millet flours and porridges made traditionally. EPEC were research in 996 samples of traditional cereals products, with 404 flours and 592 porridges. These products were taken in five municipalities of Abidjan. The strains were characterized by detection of virulence factors and phylogenetic method. The results revealed that the prevalence of EPEC was 4.1% in millet porridge and 3.4% in maize porridge. This prevalence was 6.4% and 5.4% respectively in millet and maize flours. Most of EPEC; 68.2% isolated was atypical. EPEC detected belong to phylogenetic group A (47.2%), D (28.3%), B1 (13.2%) and B2 (11.3%). In short, traditional flours and porridges from maize and millet used in infant food were risk factors by EPEC contamination, which was potentially pathogen for children.

Keywords: Cereal, Enteropathogenic Escherichia coli, flour, porridge, prevalence.

Introduction

Nowadays, foods based on completes cereals are increasingly recognized as health and wellness factor, as well as of interest because of the different nutrients they contain (carbohydrates, proteins, lipids, vitamins, and minerals) as related by Wrigley (2004); Fletcher (2004); Corsetti and Siedtani (2007). Cereals go into the formulation of complementary foods throughout the world (FAO, 2007; Kohajdová and Karovičová, 2007). If cereals are the staple food of the population, it should be noted that local production does not satisfy the consumption requirement. According to PAM (2008), cereal products accounted for 56% of food imports, in others words 1.5 million tonnes. Throughout Africa, (Abegaz et al., 2002; Traore et al., 2003; Glidja, 2004; Tou, 2007; Elenga et al., 2009; Amankwah et al., 2009; Nout, 2009; Jideani, 2012; Olorode et al., 2013), instannt flour porridges are prepared and used as complementary foods during the weaning or post-weaning period for children.
over 6 months (Tou, 2007). Industrial cereal-based flours used as complementary foods are those recommended by international bodies in rural and urban areas for their guaranteed nutritional and health qualities (Trèche, 2002; Hervé et Mouquet-Rivier, 2004). However, these foods, although rich in nutrients (Trèche, 2002; Nguyen, 2008), are most often imported and are difficult to access for the majority of the population because of their high cost (TPA, 1998).

The alternative for some developing countries is the formulation of complementary foods or porridges made from simple, fermented, or enriched cereal flours and made traditionally (Tou, 2007, Oumarou et al., 2012). But the sanitary quality of traditional flours and porridge is often questioned. Thus, pathogenic bacteria such as Salmonella, Campylobacter, Listeria and Shigella have been isolated from porridges based on cereal-flour (Gadaga et al., 2004). It was the same for EPEC, Bacillus cereus and E. coli isolated from children's meals made from sorghum and complementary foods (Gadaga et al., 2004, Islam et al., 2012). In addition, Oluwafemi and Nnanna Ibeh (2011) have found aflatoxins in foods for the consumption of children in Nigeria.

Among these germs, enteropathogenic E. coli (EPEC) has a prominent position in the etiology of gastroenteritis in children under five years of age (Yousef et al., 2007). Indeed, the pathovars of E. coli persist and develop well in various foods and especially in traditionally formulated foods (Berche, 2001). EPEC are raged in Latin America (Adriana et al., 2009), Asia (Ogata et al., 2002), Europe (Afset et al. 2004) and Africa (Rappelli et al., 2005).

In Côte d'Ivoire, the studies of Brou et al. (2009, 2013) and Soro-yao et al. (2013, 2014) demonstrated the use of cereal meal-based porridge in the same context and in several forms. The process of flour and porridge production remains partially or wholly traditional, while the instant flours recommended by the international authorities are industrial production. As a result, the health status of traditionally produced products is poorly understood.

In addition, recent studies (Dadie et al., 2010, Dadie, 2013) in Côte d'Ivoire showed the presence of EPECs in cooked minced meat, raw milk, dairy products and their involvement in infant diarrhea (Dadie et al., 2014). In this context, the evaluation and the risk management of EPEC infection related to the consumption of complementary foods is urgently necessity.

The objective of the study was to determine the rate of EPEC contamination of flours and local complement porridges by identifying the virulence genes as well as the phylogenetic grouping of EPECs.

Materials and Methods

Study area and selection criteria

The material of study was consisted of millet (Pennisetum glaucum) and maize (Zea mays) flours and porridges. The flours and porridge concerned are those intended for human consumption, in particular in infant food. They are sold near certain schools, markets or other public places in the municipalities of Abobo, Adjamé, Attécoubé, Koumassi and Yopougon. These municipalities were chosen for their popular character and especially for the multiplicity of flours and porridge selling places. The sales sites selected are those located near the schools attended by children and those located near certain markets.

Flours and porridges samples

A sample of porridge has been setting up about 300 ml of porridge packaged in a non-
food plastic material. On the other hand, a sample of flour was made up of 200 g of flour. Flours were taken from a set of flours packaged in bulk in plastic or aluminum bowls. The removal of the porridge was carried out by the vendors who used a ladle which they introduced into non-food plastic. For flours, the sellers were used a plastic cup or sometimes theirs hands to pick up the flours that was packed in paper. Immediately after collection, samples were chilled in an ice cooler box at 4 °C and transported to the laboratory for analysis within 2 h after sampling.

Identification of Escherichia coli strains

The identification process was performed based on the standard biochemical tests. The oxidase negative Gram negative bacilli were identified as *E. coli* based upon the following test reactions; acid on acid reaction with gas and no H2S production on Kligler iron agar, catalase positive, indole positive, citrate negative, methyl-red positive, urease negative, and Voges-Proskauer negative (Mahon et al. 2007)

Detection of EPEC by PCR

All strains were examined by polymerase chain reaction (PCR) with the specific primers for the presence of the virulence genes; *eaeA*, *bfpA*, *stx*, Prototype EPEC strain 2348/69 (serotype O127: H6), which expressed intimin, BFP, and EAF and E. coli EDL933 (*stx*+) strain was used as positive control in PCR assays, and *E. coli* HB101 was included in the experiment as a negative control.

PCR assays were performed using the protocol described by Beij et al. (1991) for detection of *uidA* gene and Yatsuyanagi et al. (2002) for detection of the following virulence genes: *eaeA* (structural gene for intimin of EHEC and EPEC), *bfpA* (structural gene for the bundle-forming pilus of EPEC). The minimum criteria for determination of EPEC were defined as follows: the absence of *stx1* and *stx2* for EHEC (the presence of *stx1* and *stx2* and additional presence of *eaeA* confirmed the detection of a typical EHEC isolate), the presence of *bfpA* and *eaeA* for typical EPEC (but the presence of only *eaeA* for atypical EPEC).

Template DNA was extracted from whole organisms by boiling. Bacteria were harvested from an overnight broth culture, suspended in 500 ml sterile deionized water (Analar NORMAPUR, PROLABO) and boiled at 100 °C for 10 min and then centrifuged at 12 000 g for 15 min to pellet the cell debris (Theron et al., 2000; Momba et al., 2006). A 5 ml aliquot of supernatant was used for PCR. The oligonucleotide primers used in this study are listed in Table 1.

Single PCR: It was used to detect gene *uidA*. PCR mixtures with a final volume of 25 µL consisted of 10.73 µL sterile deionized water (Analar NORMAPUR, PROLABO), 5 µL template DNA, 1.25 mM each dNTP (4 µL); 0.4 µL each primer; 2.5 µL template 10X (EUROBIO), 1.5 mM MgCl2 (25mM) (EUROBIO) and 0.5 µL Taq DNA polymerase (5 UI/µL; EUROBIOTAQ ADN POLYMERASE).

Multiplex PCR: It was used to detect gene *stx1*, *stx2*, *eaeA* and *bfpA* from *E. coli uidA*+. PCR mixtures with a final volume of 25 µL consisted of 9.05 µL sterile deionized water (Analar NORMAPUR, PROLABO), 5 µL template DNA, 1.25 mM each dNTP (4 µL) (SIGMA); 0.8 µL each primer; 2.5 µL template 10X (EUROBIO), 1.5 mM MgCl2 (25mM) (EUROBIO) and 0.25 µL Taq DNA polymerase (5 UI/µL; EUROBIOTAQ ADN POLYMERASE).
Each PCR was performed using thermocycleur type Biometra UNO II, Thermoblock version 3.300, biotron 1998, série 1712243. The reaction was started with a 3 min denaturation step at 94 °C. The temperature cycles consisted of 1 min at 94 °C, followed by 1 min at 56 °C and 1 min 30 s at 72 °C. Each cycle was repeated 30 times, and the final cycle was followed by incubation of the reaction mixture for 6 min at 72 °C. The amplified DNA was separated by submarine gel electrophoresis in 1.5% agarose, stained with ethidium bromide and visualized under UV transillumination.

Determination of phylogenetic groups

A triplex PCR were performed using the protocol described by Clermont et al. (2000) for detection of the genes Chua yjaA and TSPE4.C2 fragment. The oligonucleotide primers used in the phylogenetic groups study are listed in Table 1.

PCR mixtures with a final volume of 25 µL consisted of, 5 µL template DNA, 1.5 mM each dNTP; 25 mM MgCl₂ 20 pmol each primer; a buffer 10X (EUROBIO), and Taq DNA polymerase. The reaction was started with a 4min denaturation step at 94 °C. The temperature cycles consisted of 20 s at 94 °C, followed by 15 s at 59 °C and 30 s at 72 °C. Each cycle was repeated 30 times, and the final cycle was followed by incubation of the reaction mixture for 6 min at 72 °C. The amplified DNA was separated by submarine gel electrophoresis in 1.5% agarose, stained with ethidium bromide and visualized under UV transillumination.

Statistical analysis

The data were analyzed with SSPS version 20.0 software (SPSS). A χ² test was used to determine the statistical significance of the data. A P value of 0.05 was considered significant.

Results and Discussion

Virulence factors for E coli strains

All E. coli strains study with PCR were uidA+. Any stx (stx1 et stx2) gene have been shown in this study. All E coli strains were identified based on the detection of the eaeA+, bfpA- or eaeA-, bfpA+ profiles and the absence of stx gene as atypical EPEC.

Electrophoretic analysis of E. coli isolates has been showed in figure 1. Based on the differences in the number of fragments, the isolates showed 2 differentes bands. These bands showed the presence of EPEC.

All strains showed a positive reaction with one or more primers for eaeA (367 pb) and bfpA (324 pb) genes. On the basis of these positive reactions, two different combinations of virulence factor genes were identified: eaeA+, bfpA-, stx-, eaeA-, bfpA+, stx-. These profiles were recognized as the definitive combination for atypical EPEC. And eaeA+, bfpA+, stx- was recognized as the definitive combination for typical EPEC. The distribution of these virulence genes according to the PCR types identified is shown in Table II.

Out of the 46 strains, 22 (47.8%) showed the characteristic atypical EPEC combination of eaeA+, bfpA-, stx-, 7 (15.2%) eaeA-, bfpA+, stx-, and 17 (37%) two profile combinations. In flours, combination of eaeA+, bfpA-, stx- is 12 (50%), eaeA-, bfpA+, stx- is 2 (8.3%) and the two profiles combination were 10 (41.7%). But in porridges, these combination were 10 (45.5%) for eaeA+, bfpA-, stx-, 5 (22.7%) for eaeA-, bfpA+, stx- and 7 (31.8%) for two profiles combination.

Prevalence of EPEC

A prevalence of 3.7% of EPEC were found in porridges and 5.9% in flours. There was
statistically significant correlation regarding the prevalence of EPEC (4.6%) isolates in relation to flours and porridges ($p<0.05$). EPEC strains were mostly isolated in millet product than maize product. Thus, in porridge, 12 (4.1%) EPEC were detected in millet porridge and 13 (6.4%) were also detected in millet flour (Table III).

Compliant rate

The virulence of EPEC strains for children was very study. So the presence of EPEC in children food was considered that this food is not safety for them. The analysis of sample considering the presence of EPEC showed 950 samples out of 996 (95.4%) were non-compliant according of normative values. A rate of 4.6% of products is non-compliant. However, there was no significant difference ($p\geq0.05$) between the proportions of compliant products. In addition, non-compliance was higher in millet flours with 6.4% (Table IV).

Typical and atypical EPEC

Table V showed all of EPEC detected; it showed that 22 EPEC were found in porridges and 24 in flours. Among the 46 EPEC isolated in flours and porridges, 29 (63%) were atypical EPEC (aEPEC) with 15 (68.2%) aEPEC in porridges and 14 (58.3%) aEPEC in flours. Otherwise, 17 (37%) of EPEC were typical EPEC (tEPEC) with 07 (31.8%) aEPEC in porridges and 10 (41.7%) aEPEC in flours.

EPEC phylogenetic group

Electrophoretic analysis of enteropathogenic *E. coli* phylogenetic group has been showed in figure 2. This figure shows different bands of sizes 279 bp, 211 bp and 152 bp. These sizes correspond respectively to the ChuA, Yja and Tspec gene. As shown in Table VI, EPEC strains are phylogenetic group A (47.2%). The strains of group D represent 28.3% of all EPEC pathovars. Out of the 19 pathotypes in the porridges, 9 (47.4%) EPEC were to the phylogenetic group A and were the most frequent. Five (5) pathotypes were to phylogenetic group D (26.3%) and 3 to group B1 (15.8%). *E. coli* strains belonging to the phylogenetic group B2 (10.5%) are the weakest represented. Otherwise, in flours, 16 (47.1%) strains were to group A and it is the group which contains more pathotypes. It was followed by group D (29.4%).

The results presented here showed that enteropathogenic *E. coli* were found in a wide range in porridges and flour prepared at home and sold near certain schools, markets or other public places. Our study shows a prevalence of 4.6% in both flours and porridges but, EPEC were most isolated in flours than in porridges ($p<0.05$). The results were similar to the report of Norazah *et al.* (1998) in Malaysia.

Many studies lead in flours have shown presence of *Escherichia coli* (Sperber, 2007) and others such as *E. coli*, *coliforms*, *Bacillus cereus*, *Bacillus spp* (Berghofer *et al.* 2003) and many other microorganisms in flours in Australia to a lesser extent. Other studies have shown the absence of pathogenic germs in flours (Olorunfemi *et al.*, 2005) and in the porridges (Soro-yao *et al.*, 2013). In Africa, cereals flours are used for porridges and porridges are used as traditional African weaning food. The flour (maize and millet) was the most contaminated commodity in the products. In their study of pathogenic *E. coli* in traditional African weaning food, Nyatoti *et al.* (1997) found *E. coli* in 36% of the food samples used for weaning foods, most of which are prepared from maize flour. Kunene *et al.* (1999) found an *E. coli* incidence of 53% with a range of 3.20–5.02 log10 CFU/g
in sorghum flour and fermented sorghum porridge, commodities that have similar characteristics to maize flour. Home-made street-vended foods have also been reported to contain *E. coli* incidence of between 7 and 32% (Cardinale et al., 2005; Hanashiro et al., 2005). There was a high overall incidence of enteropathogenic *E. coli* in this study (3.7% of the porridge samples and 5.9% of the flour samples), with the highest incidence in millet flour (6.4%) and millet porridge (4.1%). Previous studies carried out in Zimbabwe have reported finding pathogenic *E. coli* (EPEC) in 16% of all food samples (Simango et al., 1992) while Nyatoti et al. (1997) detected pathogenic strains of *E. coli* in 15% of their food samples.

Also, pathogenic bacteria of *Salmonella*, *Campylobacter*, *Listeria* and *Shigella* have been isolated from various infant foods, including gruels based cereal-flour (Gadaga et al., 2004). The same was true for EPEC, *Bacillus cereus* and *E. coli* isolated from children's meals made from sorghum and complementary foods (Kunene et al., 1999, Islam et al., 2012). Furthermore, Motarjemi et al. (1993) detected Aeromonas Spp, *Staphylococcus aureus*, *Bacillus cereus*, *Salmonella* spp. and *Vibrio cholerae* in children's porridge from maize in Ghana.

Hygiene during handling and cooking food is very important. Human beings represent the largest contamination sources of food. Health and personal hygienic knowledge of the street food vendors surveyed are also important. The contamination of flour and porridge could be explained by the fact that, according to many authors pathogenic *E. coli* can survive on the hands, tools at large number and contaminated food (Moore et al., 2003; Dawson et al., 2006; Taulo et al., 2009).

According to WHO (1989), hand-washing is very important because the hands are considered the most important vehicle for transfer of micro-organisms from faeces, nose, skin and other parts of the body into food. Studies in Epidemiology have further confirmed that bacteria such as *Salmonella typhi*, *Escherichia coli* can survive for varying periods on the fingers and other parts of the body (Pether and Gilbert, 1971). Mensah et al. (2002) reported in a study in Accra that out of 511 street food items examined in Accra, 69.7% contained mesophilic bacteria and 33.7% contained Enterobacteriaceae. Also in Côte d’Ivoire Dadié et al. (2010, 2013, 2014) reported the presence of EPEC and other *Escherichia coli* in food and their implication in infant diarrheaea. From these studies, it is evident that flour and porridges which are manipulated by the hand contain EPEC.

Domestic practices of food handling and preparation are one of the numbers of reasons that explain the increasing incidence of gastrointestinal infection associated with domestic environments (Scott et al., 1982, Daniels, 1998; Beumer and Kusumaningram, 2003). The study has demonstrated that the incidence of EPEC was high in manipulated food.

Thus, this contamination by EPEC could also be justified by environment as shown in Ghana during studies of Feglo and Sakyi (2012).

On the other hand, the contamination of the porridge sold near certain schools, markets or other public places and traditional flours sold in open markets, analyzed during this study, could be favored by an exposure temperature such as temperatures between 20 °C. and 40 °C which are favorable to the proliferation of EPEC. However, the studies of Yeboah-Manu et al. (2010) have shown that this contamination is due to excessive handling of food products. In addition, the study of WHO
(2003) showed that non-protection against aerosols is a cause of EPEC contamination.

Temperature has an impact on the transmission of pathogenic germs. Taulo et al. (2009) showed in their study that samples collected at temperatures less than 30 °C contained significantly more strains of *Escherichia coli* and *Staphylococcus aureus* followed by samples collected at temperatures between 30 °C and 40 °C and finally Samples collected at temperatures above 40 °C which contained fewer germs.

The presence of EPEC in food is associated with contamination that has been directly introduced into the food by food handlers through coughing and sneezing as well as storage of food at high temperature (Kaneko et al., 1999; Sandel and McKillip, 2004). In this study, it was observed that most porridge was prepared in advance and stored at ambient temperature for 1–4 h before finishing selling and this practice could have allowed the pathogens to grow to large numbers. The high number of pathogens and the ambient food storage temperature reported in some households may be a contributing factor with regards to EPEC food intoxication in children population.

One of the major factors contributing to the deterioration of the microbiological quality of foods (street) in developing countries is their maintenance at room temperature for several hours of sale. This explains the frequent association of street foods with gastroenteritis disorders (Barro et al., 2007).

Table 1 Primers used

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
<th>Size (pb)</th>
<th>References/Gen bank</th>
</tr>
</thead>
</table>
| *uidA* | UAL: 5’ AAA ACG GCA AGA AAA AGC AG –3’
UAR: 5’ACG CGT GGT TAC AGT CTT GCG –3’ | 147 | Beij et al., 1991 |
| *eaeA* | EaeF 5’-CACACGAAATAAAACTGACTAAAAATG-3’
Eaer 5’-AAAAACGCTGACCCGCACCTAAAT-3’ | 367 | Yatsuyanagi et al., 2002 |
| *bfpA* | Y bfp fp-5’-AATGGTGCTTGCGTTGCTGC-3’
Y bfp bp-5’-GCCGCTTTTATCCCAACCTGGTA-3’ | 324 | Yatsuyanagi et al., 2002 |
| *stx1* | stx1f-5’-GAAGAGTCGGGATTACG-3’
stx1r-5’-AGCGATGACGCTATTAATAA-3’ | 130 | AF461172 |
| *stx2* | stx2-5’-ACCGTTTTTTCAGATTTTTACACATA-3’
stx2-5’TACACGAGGACGTAACAGT-3’ | 298 | AY143337 |
| *ChuA* | ChuA.1-5’-GACGAACCA ACGGTCAGGAT-3’
ChuA.2 5’-TGCCGCAAGTACCAAGACA-3’ | 279 | Clermont et al., 2000 |
| *YjaA* | YjaA.1-5’-TGAAGTGTCCAGGACGCTG-3’
YjaA.2 5’-ATGGAGAATGCCGTCCTCAAAC-3’ | 211 | Clermont et al., 2000 |
| *TspE4C2* | TspE4C2.1-5’-GAGTAATGTCGGGGCATTCA-3’
TspE4C2.2 5’-CGCGCCAACAAAGTATTACG-3’ | 152 | Clermont et al., 2000 |

eaeA: *E. coli* attaching-effacing
bfpA: bundle-forming pilus
stx1: shiga toxin 1
stx2: shiga toxin 2
Table 2: Distribution of virulence genes

<table>
<thead>
<tr>
<th>Virulence genes</th>
<th>Porridges</th>
<th>Flour</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence</td>
<td>Frequency (%)</td>
<td>Presence</td>
</tr>
<tr>
<td>eaeA+</td>
<td>+</td>
<td>45.5</td>
<td>+</td>
</tr>
<tr>
<td>bfpA+</td>
<td>+</td>
<td>22.7</td>
<td>+</td>
</tr>
<tr>
<td>Eae^+ - bfp^+</td>
<td>+</td>
<td>31.8</td>
<td>+</td>
</tr>
<tr>
<td>Stx^+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100</td>
<td>24</td>
</tr>
</tbody>
</table>

*Eae: E. coli attaching-effacing
Bfp: bundle-forming pilus*

Table 3: Prevalence of EPEC

<table>
<thead>
<tr>
<th>Type of food</th>
<th>Samples (Effective)</th>
<th>EPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Effective</td>
</tr>
<tr>
<td>Porridge of millet</td>
<td>296</td>
<td>12</td>
</tr>
<tr>
<td>Porridge of maize</td>
<td>296</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>592</td>
<td>22</td>
</tr>
<tr>
<td>Flour of millet</td>
<td>202</td>
<td>13</td>
</tr>
<tr>
<td>Flour of maize</td>
<td>202</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>404</td>
<td>24</td>
</tr>
</tbody>
</table>

General Total

Table 4: Compliant rate of analyzed product following the presence of EPEC

<table>
<thead>
<tr>
<th>Type of food</th>
<th>Samples</th>
<th>Food product qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conforme</td>
</tr>
<tr>
<td>Porridge of millet</td>
<td>296</td>
<td>284 (95.9%)</td>
</tr>
<tr>
<td>Porridge of maize</td>
<td>296</td>
<td>286 (96.6%)</td>
</tr>
<tr>
<td>Flour of millet</td>
<td>202</td>
<td>189 (93.6%)</td>
</tr>
<tr>
<td>Flour of maize</td>
<td>202</td>
<td>191 (94.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>996</td>
<td>950 (95.4%)</td>
</tr>
</tbody>
</table>

Table 5: Distribution of typical and atypical EPEC

<table>
<thead>
<tr>
<th>EPEC</th>
<th>Porridges N (%)</th>
<th>Flours N (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>7 (31.8 %)</td>
<td>10 (41.7 %)</td>
<td>17 (37 %)</td>
</tr>
<tr>
<td>Atypical</td>
<td>15 (68.2 %)</td>
<td>14 (58.3 %)</td>
<td>29 (63 %)</td>
</tr>
<tr>
<td>Total</td>
<td>22 (100 %)</td>
<td>24 (100 %)</td>
<td>46 (100 %)</td>
</tr>
</tbody>
</table>

826
Table 6 Distribution of EPEC following the phylogenetic group

<table>
<thead>
<tr>
<th>Origin</th>
<th>Group A</th>
<th>Group B1</th>
<th>Group D</th>
<th>Group B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porridge of millet</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Porridge of maize</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Flour of millet</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Flour of maize</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total (%)</td>
<td>25 (47.2%)</td>
<td>07 (13.2%)</td>
<td>15 (28.3%)</td>
<td>6 (11.3%)</td>
</tr>
</tbody>
</table>

Fig. 1 Multiplex PCR of virulence genes in EPEC isolates from porridges and flour samples. Lane 1, 50 à 1000 pb molecular weight marker in base pairs; lane 2, positive control; lane 11, negative control and lane 3 to lane 10, PCR products obtained with DNA of EPEC isolates

Fig. 2 PCR products for phylogenetic group. Lane 1, 50 à 1000 pb molecular weight marker in base pairs; lane 2, positive control; lane 14, negative control and lane 3 to lane 13, PCR products obtained with DNA of EPEC isolates for phylogenetic group
The study showed that there was no significant difference between typical and atypical EPECs (p > 0.05). The typical EPEC rate obtained may be due to the difficulty of detecting the bfp gene, which is controlled by the plasmid EAF and which according to Nataro and Kaper (1998) would only be expressed if the EPECs were not stressed during cultivation.

According to the TPA (1998) standard, more than half of the porridges and flours analyzed are non-compliant. This result can be explained by the lack of formal surveillance for food prepared and sold on public roads and open markets. Barro et al. (2002) considered that this situation could directly threaten the health of consumers.

Clermont et al. (2000) developed a simple and rapid method (triplex), allowing the classification of pathovars into 4 phylogenetic groups. The application of this technique to the strains gives a diversified phylogenetic distribution, with the majority (47.2%) of the pathovars belonging to group A. The pathovars of group B2 represent 11.3% and those of the group D, 28.3%. The distribution obtained during our study is different from that obtained, following an analysis of 64 strains, by Clermont et al. (2000) who found 58% of B2, 18.7% of A and 17.1% of D. This difference with our results could be due to the fact that Clermont worked on human strains and it is established that most potentially pathogenic extra-intestinal strains belong to group B2 and to a lesser extent group D (Bonacorsi et al., 2000).

In conclusion, the detection of pathogenic E. coli in flours and in porridge sold and consumed by children shows that they are sources of pathogens. These germs being etiologic agents of human diarrhea, rules of hygiene must be applied to ensure the safety of porridges and child consumers.

References

Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Applied and Environmental Microbiology, 57:1013-1017

Dawson, P., Han, I., Cox, M., Black, C., and Simmons, L., 2006. Resident time and food contact time effects on transfer of Salmonella Typhimurium from tile, wood and carpet: Testing the five second rule. Journal of Applied Microbiology, 102(4): 1364–5072

Chemistry Sciences, 3: 1274-1285

Simango, C., Dindiwe, J., Rukure, G., 1992. Bacterial contamination of food and

isolated from diarrheal outbreaks. Yousef, M., Alikhani, Akbar, M., Bahram, F.,
Enteropathogenic and Shiga Toxin-
producing *Escherichia coli* among
Children with and without Diarrhoea in
Iran. *Journal Health Population

Yeboah-Manu, D., Kpeli, G., Akyeh, M., and
of ready-to-eat foods sold on and
around University of Ghana Campus.
Research Journal of Microbiolology,
5:130-136.

How to cite this article:

Prevalence of Enteropathogenic *Escherichia coli* in Maize (*Zea mays*) or Millet (*Pennicetum