Prevalence of *Cryptosporidium* spp. among Diarrhea Patients attending Hospital and Community based in Cachar District of Assam, India

Gulzar Hussain¹,², Shubhadeep Roychoudhury² and Baby Singha¹*

¹Molecular Parasitology Laboratory, Department of Zoology, G. C. College, Silchar, India
²Department of Life Science and Bioinformatics, Assam University, Silchar, India
*Corresponding author

**Abstract**

Diagnosis of Cryptosporidiosis and associated diarrhea is a big challenge for healthcare in this region. To determine the prevalence of cryptosporidiosis among the hospital in the Cachar district of Assam, India. A standard conventional technique was used in the identification of parasites, including cryptosporidiosis from among the 220 diarrheal patients whose samples were analyzed. We report a 65.9% (145 out of 220) overall parasite prevalence and 16.3% (36 out of 220) prevalence of *Cryptosporidium* oocysts was found in the patients studied. High percentages of *Cryptosporidium* positive cases were observed in the <1 years (31.3%) and the 1-14 years (22.2%) age groups. Other intestinal parasites found in the stool samples of the studied diarrhea patients were: hookworm which was observed in 25(11.3%) patients, *Ascaris lumbricoides* also in 25(11.3%) patients, *Entamoeba histolytica* was found in 19(8.6%) patients, *Giardia lamblia* in 11(5.0%) patients, *Cyclospora cayetanensis* in 07 (3.1%) patients, *Strongyloides stercoralis* in 5 (2.2%), and *Trichuris trichiura* was found in 09(4.0%) patients. Poor hygiene both personal and environmental, poor diagnostic, clinical, prevention and control skills facilities may have impacted on Cryptosporidiosis has been reported in this study.

**Keywords**

*Cryptosporidium* spp., Diarrhoea, Intestinal parasites.

**Article Info**

Accepted: 20 August 2016
Available Online: 10 September 2016

**Introduction**

*Cryptosporidium* spp, an apicomplexan protozoan, parasites causes acute and persistent diarrhoea in the young of several animal species (Angus *et al*., 1983) and life-threatening chronic diarrhea in immunocompromised individuals (Goodgame *et al*., 1995). The global prevalence of this parasite can be ascertained by the reports from all continents (Current *et al*., 1991). Intestinal parasitic infections are among the most common infections in the worldwide. It is estimated that 3.5 million peoples in the world are affected as a result of these infections, the majority being children (WHO, 1998). The main clinical sign of these disease caused by the parasites is diarrhea (Al-Shammari *et al*., 2001). It has effect particularly on infants, and elder people and annually killing at least 4-5 million of those aged less than 5 years in Asia, Africa, and Latin America (Bern *et al*.,...
The main problems in developing countries such as India, particularly in this region where humid condition, the unhygienic condition, and the poor socioeconomic conditions are prone to this parasite. Intestinal parasitic infections cause severe diarrhea, especially in infants, and can be fatal in acute diseases (Adamu et al., 2005).

In this study, we investigate the prevalence of Cryptosporidium spp. with special importance to intestinal parasites in all age group.

**Materials and Methods**

A cross-sectional study was conducted from January 2012 to January 2013. A total number of 220 patients visiting pediatric OPD or admitted at pediatric ward, diarrhea ward at Silchar Medical College and Hospital, SMD Civil Hospital, Silchar, Narisikha and various communities in this region of Cachar district Assam, India, having complaints of diarrhea, weight loss, anorexia, and other conditions, which may raise thought of intestinal parasitic infection, were included in this study. The clinical history along with a questionnaire form containing various details of socio-demographic factors were obtained. Stool samples were examined for the presence of Cryptosporidium oocysts and other parasites. Saline and iodine mount preparations were examined microscopically under a 100x magnification with oil immersion to detect oocysts and/or parasites before and after concentration of the sample of the formal ether technique. The modified Ziehl-Neelsen staining was used for detecting coccidian parasites.

**Results and Discussion**

The study was conducted a total number of 220 patients enrolled in the various Hospital and community level of the Cachar districts, Assam, India, 116 (52.72%) were males and 104 (47.27%) were females (Table 1).

As shown in Table 2, highest number of parasitic infections was seen in age group of, <1 years and 1-14 years. This can be characterized to attribute that the school going age and higher outdoor activities the children are more prone to these diseases. In addition, parasitic infections were found to be more in males.

We report a 65.90% (145 out of 220) overall parasite prevalence and 16.3% (36 out of 220) prevalence of Cryptosporidium oocysts was found in the patients studied. No parasite was detected in 44 (20%) patients investigated. The age range was between <1 years to 84 years. The majority 81(36.8%) and 72(32.7%) of the patients were between <1 and 25-34 years respectively. The majority of the study population presented with persistent diarrhea, 132 (61.36%). Other intestinal parasites found to be causing diarrhea alongside Cryptosporidium are hookworm and Ascaris lumbricoides with 25 (11.3%) prevalence each. Entamoeba histolytica was found in 19 (8.6%) patients, Giardia lamblia in 14(6.3%) patients, Isospora belli in 11(5.0%), Cyclospora cayetanensis in 8(3.6%) patients, Strongyloides stercolaris in 3 (1.3%), and Trichuris trichiura was found in 6 (2.7%) patients. (Figure 2 and table 2).

The study also reveals that cryptosporidiosis is higher people of poor socioeconomic status, out of 36 cases of Cryptosporidiosis from the study, 24 (66.6%) was found to be associated with poor living conditions, they use contaminated drinking water some time direct from the pond, river and marsh which may be contaminated with parasites and these increase the risk of infection. In this study the people of lower educational levels were found to be associated with
Cryptosporidiosis, out of 36 cases, 27 patients (75.0%) was found to be having lower educational background as compared to only 6 patients (16.6%).

*Cryptosporidium* was the most commonly detected diarrhoeagen amongst the various intestinal parasites which were for in the present study. Its role as a diarrhoeagen at high frequency has also been reported from hospitals in northern (Uppal *et al.*, 1991), southern (Mathan *et al.*, 1985), eastern (Das *et al.*, 1993) and western (Sarawathi, 1988) India (range of detection 4.3-13.0%).

Intestinal protozoan parasites are widespread in the worldwide and remain key role in human health concern in many tropical and subtropical countries. The prevalence rates of intestinal parasitic infections and type of parasite exhibit wide variation from different countries, between geographical areas, communities, and even seasons (Tappe *et al.*, 2011).

In this study, prevalence of intestinal parasites is 65.9%; among these, 8.6% are *Entamoeba histolytica*, 5% are *Giardia lamblia*, 16.3% *Cryptosporidium* spp., 11.3% *Hookworm* 4.09% *Trichuris trichiura* 0.36% *Ascaris lumbricoides*. 3.1% *Cyclospora cayetanensis*, and 2.2% *Strongyloides stercoralis*.

**Table.1** Age and sex distribution in the study population

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Percentage (%)</th>
<th>Male (n=116)</th>
<th>Female (n=104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1</td>
<td>69 (31.3%)</td>
<td>31(14.09%)</td>
<td>38(17.2%)</td>
</tr>
<tr>
<td>1-14</td>
<td>49 (22.2%)</td>
<td>25(11.36%)</td>
<td>24(10.9%)</td>
</tr>
<tr>
<td>15-24</td>
<td>34 (14.5%)</td>
<td>22(10.0%)</td>
<td>12(5.4%)</td>
</tr>
<tr>
<td>24-34</td>
<td>23(10.45%)</td>
<td>11(5.0%)</td>
<td>12(5.4%)</td>
</tr>
<tr>
<td>35-44</td>
<td>19(8.6%)</td>
<td>09(4.09%)</td>
<td>10(4.54)</td>
</tr>
<tr>
<td>45-54</td>
<td>13(5.9%)</td>
<td>07(3.18%)</td>
<td>06(2.7%)</td>
</tr>
<tr>
<td>55-64</td>
<td>08(3.6%)</td>
<td>06(2.7%)</td>
<td>02(0.90%)</td>
</tr>
<tr>
<td>65-74</td>
<td>04(1.8%)</td>
<td>04(1.8%)</td>
<td>0(0.0%)</td>
</tr>
<tr>
<td>75-84</td>
<td>01(0.45%)</td>
<td>01(0.45)</td>
<td>0(0.0%)</td>
</tr>
</tbody>
</table>

Key; %=percentage, n=number

**Table.2** Distribution of *Cryptosporidium* with other intestinal parasites according to sex

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Patients</th>
<th>Total (n=145)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Cryptosporidium</em> spp.</td>
<td>31(14.09%)</td>
<td>36(16.3%)</td>
</tr>
<tr>
<td><em>Hookworm</em></td>
<td>04(1.8%)</td>
<td>25(11.3%)</td>
</tr>
<tr>
<td><em>Ascaris lumbricoides</em></td>
<td>15(6.8%)</td>
<td>25(11.3%)</td>
</tr>
<tr>
<td><em>Cyclospora cayetanensis</em></td>
<td>01(0.45%)</td>
<td>07(3.1%)</td>
</tr>
<tr>
<td><em>Giardia lamblia</em></td>
<td>09(4.09%)</td>
<td>11(5.0%)</td>
</tr>
<tr>
<td><em>Strongyloides stercoralis</em></td>
<td>0(0.0)</td>
<td>05(2.27%)</td>
</tr>
<tr>
<td><em>Entamoeba histolytica</em></td>
<td>17(7.7%)</td>
<td>19(8.6%)</td>
</tr>
<tr>
<td><em>Trichuris trichiura</em></td>
<td>0(0.0)</td>
<td>09(4.09%)</td>
</tr>
<tr>
<td><em>Ascaris lumbricoides</em></td>
<td>01(0.45%)</td>
<td>08(0.36%)</td>
</tr>
</tbody>
</table>

Key; %=percentage, n=number
Fig.1 Microscopy (10*100X magnification) using M-zn staining technique. A-B: Cysts of *Cryptosporidium* spp.

Fig.2 Prevalence of *Cryptosporidium* spp. and other parasites

In 40% of the cases, the nuclear family was found to be uneducated, which leads to poor living conditions and poor sanitary habits, ultimately increasing the risk of parasitic infections. About 54% cases were living in hurt; such type of hurt tends to be in surrounding area without proper sanitation and drainage system, which contribute to higher prevalence of parasitic infection (Champa et al., 2012 and Kiran et al., 2014). It was also noted that 46.6% cases where having drinking water from open pond, river and marshes and 20% were using water from borewell. Because these wells are constructed at a shallow level, they can come in contact with condition for survival and development of eggs like *Ascariasis lumbricoides* (Awasthi et al., 2008).

In this study, 16.3% of cryptosporidiosis was reported among the population of mostly affected aged <1 years and 1-14 years. This is higher than the report of 1% from England and 10% from Peru (Kortbeek et al., 2000 and Moseier et al., 2000). Factors which help in parasite transmission include transmission in day care centers, swimming pools, public water supplies, and other water sources. *Cryptosporidium* was detected by modified acid fast staining of
fetal smears in only 2% of samples analyzed in Accra, Ghana (Binka et al., 2011) compared to 16.3% obtained in our study with the same detection protocol of modified acid fast staining of fetal smears. This high prevalence may be due to under reporting, poor diagnostic skills caused indirectly by poor resources regarding proper management to control of the disease in developing countries. If use of improved better diagnostic methods such as having high sensitivity must be used to diagnose parasitic infections in patients with diarrhea.

Acknowledgements

Authors acknowledge the help from the Department of Pediatrics, Microbiology, Silchar Medical College and Hospital in collection of the stool samples.

References


How to cite this article:


doi: http://dx.doi.org/10.20546/ijcmas.2016.509.058