

Original Research Article

doi: <http://dx.doi.org/10.20546/ijcmas.2016.502.084>

Synthesis and Study of New N-Aryl Pyrroles

Hussein Habeeb Mustafa*

Department of Basic Sciences, Faculty of Dentistry, University of Kirkuk, Kirkuk, Iraq

*Corresponding author

ABSTRACT

Keywords

Pyrrole,
Sultone, Sultam

Article Info

Accepted:
28 January 2016
Available Online:
10, February 2016

Some new N-aryl-2,4-dimethyl pyrroles which widely used to prepared an insecticide were synthesized through splitting of SO_2 – group from the corresponding sultams through heating in the presence of copper metal. The products were diagnosed by using UV, NMR spectrum, infrared (IR) in Bangor university - wales – UK, moreover to diagnosed the physical properties for preparing compounds.

Introduction

Although sultone (aliphatic or aromatic) have long history in chemical synthesis works. They are widely investigated because of their important roles that play in various types of dyes, chemical intermediate in the production of fungicides, cation- exchange resins, detergents, as a corrosion inhibitor for metal.[1,2,3a].

Moreover, sultone and aryl-pyrroles derivatives, were used to prepared an insecticide which is a substance used to kill insects. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in agricultural 20th century's productivity. [3b] the synthesis of first series of (1,8-naphtho sultone) was reported by Erdmann [4] a number of mono and bithiazine sultams have been known [5,6,7].

These compounds were prepared from aromatic primary amines and sultones. Morel and Verkad prepare some furans from the corresponding sultones under the influence of heat in the presence of copper powder as heat conductor. [8] Using identical conditions, Helferich and Co-workers were able to synthesis (2,4-dimethyl pyrroles) from the corresponding (N-aryl-2,4-dimethyl butadiene-1,3-sultones) using copper or lead oxide. [9,10] In this work many new pyrroles were synthesized and the structures of the products characterized using (UV, I.R., NMR) and physical constants

Experimental

Synthesis of (2,4-Dimethyl Butadiene -1,4-Sultone)[11-13]

Conc. sulfuric acid (5.6 ml, 0.1 mol) was

gradually added at 0 °C to a stirred mixture of acetic anhydride (20.4 ml, 0.2 mole) and mesityl oxide (11.0 ml, 0.1 mol). The reaction mixture was stirred for 2 hrs at 0 °C, then left overnight in the fridge. After that the mixture was stirred for 24 hrs at room temperature, followed by the addition of water (100 ml) to give a precipitate which was filtered, and recrystallized from methanol to give (19.8 g, 90 %).

Synthesis of Compounds (1, 2, and 3)

A mixture of (2,4-dimethyl butadiene-1,4-sultone) (3.2 g, 0.02 mole) and *m*-phenylene diamine, *o*-phenylene diamine and benzidine alternatively, was heated on oil bath at (140 - 170 °c), till the completion of the reaction then dilute HCL was added after cooling of the mixture, the reaction mixture was poured on dimethyleformamide (DMF) (4.0 ml), the products was precipitated on cooling and then filtered, (table 1) .

Synthesis of N-aryl 2,4-Dimethyl Pyrroles : (4 , 5 and 6)

A mixture of (0.001 mol) of compounds (1,2 and 3) and (5 g) of copper powder were placed in distillation flask, the mixture was heated in an oil bath to 220 °c, SO₂ gas bubbles were liberated from the reaction vessel. after finishing of the bubbles (3 hrs), the reaction mixture was cooled and (25 ml) of ether was added, treated with 10% solution of Na₂CO₃, the organic layer separated and washed with water several times, the solvent evaporated and a pure

liquids was obtained, (table 2).

Results and Discussion

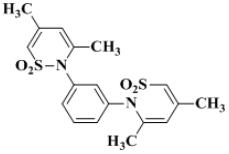
The synthesis of (2,4-dimethyl butadiene-1,4-Sultone) was according to the method described by Morel and Verkade [9] from the reaction of mesityl oxide and acetic anhydride, the yield was 90 % with melting point (71 °c), yellow crystal, the I.R. spectra has a characteristic bond at (1160 – 1315 cm⁻¹) for the SO₂ group of the sultone ring, a band at (2830 – 2980 cm⁻¹) for the C-H stretching of the two methyl groups, the conjugated diene system appeared at (1490 cm⁻¹ and 1590 cm⁻¹).

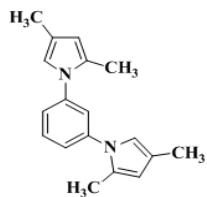
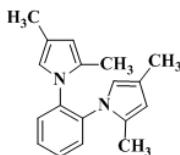
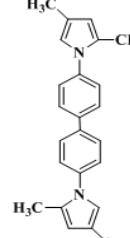
Synthesis of Sultams

Sultams are an important compounds, they act as sulfonylating agents of serine enzymes, inactivating the enzyme by forming a stable adduct.[14,15] A number of bithiazinesultams have been prepared from reaction between aromatic primary amines and sultone.

In this paper two moles of (2,4-dimethyl butadiene-1,4-sultone) treated with one mole *m*-phenylene diamine, *o*-phenylene diamine and benzidine giving the products 2,2'-(1,3-phenylene)bis(3,5-dimethyl-2H-1,2-thiazine 1,1-dioxide) compound (1); 2,2'-(1,2-phenylene)bis(3,5-dimethyl-2H-1,2-thiazine 1,1-dioxide) compound (2); and 2,2'-(1,1'-biphenyl]-4,4'-diyl)bis(3,5-dimethyl-2H-1,2-thiazine-1,1-dioxide) compound (3); respectively as in scheme (I) .

Table.1 Physical Data of Compound (1 , 2 And 3)


Compound NO.	Yield %	Melting point °C
1	72.6	215 - 217
2	61.9	207 - 209
3	44.0	250 - 202




Table.2 Physical Data of Compound (4, 5 And 6)

Compound NO.	Yield %	Boiling point (10 mm Hg)
4	64	93 - 95
5	69	82 - 85
6	74	112 - 116

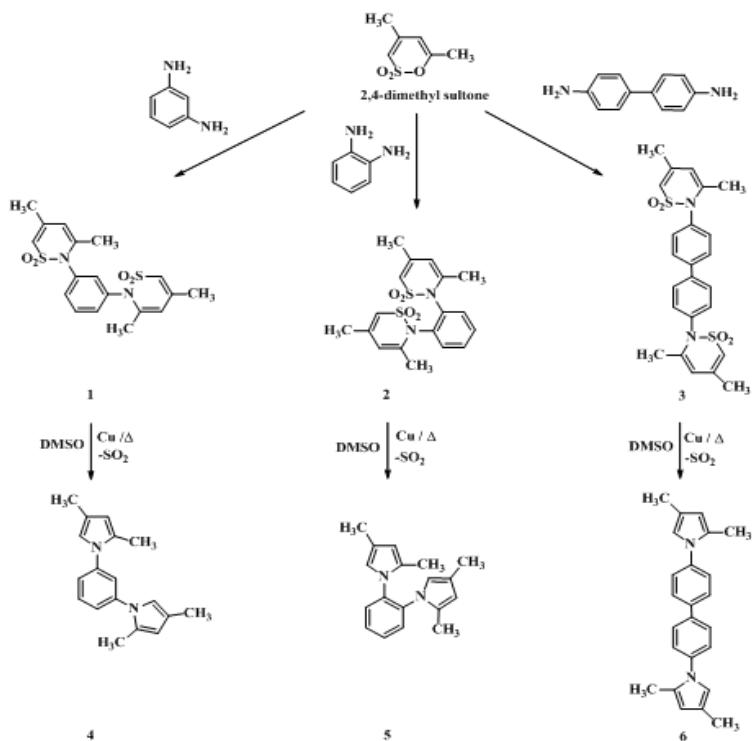

Fig.1 Preparation of (2,4-Dimethyl Butadiene-1,4-Sultone)

Table.3 Nmr Data for Compounds (1 - 6) Respectively

compound	¹ H NMR (500 MHz, CDCl ₃)	¹³ C NMR (400 MHz, CDCl ₃)
 (1)	δ 6.36 (br d, J = 1.4 Hz, 1H), 6.35 (br d, J = 1.4 Hz, 1H), 6.29 (d, J = 0.9 Hz, 2H), 6.25 (t, J = 1.5 Hz, 1H), 5.82 (d, J = 1.0 Hz, 2H), 2.43 – 2.15 (m, 7H), 2.10 – 1.89 (m, 7H).	δ 144.99, 141.58, 134.37, 132.10, 130.79, 129.71, 116.03, 111.00, 20.86, 18.69.
 (2)	δ 6.80 – 6.70 (br m, 1H), 6.60 – 6.50 (m, 1H), 6.22 (d, J = 0.9 Hz, 1H), 5.73 (d, J = 1.0 Hz, 1H), 2.25 (br d, J = 0.9 Hz, 3H), 1.92 (br d, J = 0.6 Hz, 3H).	δ 145.00, 139.62, 138.47, 129.69, 129.02, 116.04, 110.35, 20.87, 18.70.
 (3)	δ 7.51 (br d, J = 7.5 Hz, 4H), 6.81 (br d, J = 7.5 Hz, 4H), 6.27 (d, J = 0.9 Hz, 2H), 5.89 (br d, J = 0.6 Hz, 2H), 2.27 (m, 6H), 1.97 (m, 6H).	δ 145.06, 141.65, 137.32, 136.99, 129.56, 129.22, 116.10, 111.07, 20.93, 18.76.

	δ 7.74 (br t, J = 1.4 Hz, 2H), 7.54 (dd, J = 8.0, 6.9 Hz, 2H), 6.98 – 6.77 (m, 2H), 6.11 – 5.8 (m, 2H), 2.20 – 2.11 (br m, 6H), 1.95 – 1.66 (m, 6H).	δ 141.60, 128.70, 127.24, 126.32, 123.33, 117.79, 116.04, 114.50, 11.98, 11.51.
(4)		δ 7.50 – 7.31 (br m, 4H), 6.42 – 6.38 (m, 2H), 5.98 – 5.94 (m, 2H), 2.17 – 2.13 (m, 6H), 2.03 – 1.99 (m, 6H).
(5)		δ 7.81 – 7.65(br t, J = 1.3 Hz, 4H), 7.67 – 7.55 (m, 4H), 6.44 – 6.42 (m, 2H), 6.06 – 6.01 (br m, 2H), 2.18 – 2.11 (m, 6H), 2.04 – 1.98 (m, 6H).
(6)		δ 137.00, 134.79, 128.03, 127.26, 125.65, 123.59, 117.12, 115.37, 11.31, 10.84.

Scheme.1 Synthesis of Compounds (1 to 6)

The I.R. spectra of the products were nearly identical. The characteristic absorption bands of the SO_2 group was shifted to a higher frequencies it self ($1160-1315 \text{ cm}^{-1}$), and anew band at (3050 cm^{-1}) corresponds to (C-H) stretching of aromatic rings, and a band at 1140 cm^{-1} for C-N) bond stretching.

Synthesis of N-aryl Pyrroles

Helperich and co-workers [6,10] were able to synthesize (2,4-dimethyl pyrroles) from the corresponding (N-aryl-2,4-dimethyl butadiene-1,4-sultam) Using copper lead oxide as heat conductors. In this work a number of new pyrroles were synthesized from the heating of compound (1), (2) and (3) in the presence of copper using DMSO as reaction medium, the heating is continued until the splitting of SO_2 was diminished, giving compounds (4, 5 and 6). The U.V. spectrum of N-aryl pyrroles shows absorption maximum in the range of (202 - 208 nm) for the pyrrole ring and another absorption peak at (238 - 241 nm) for N-aryl ring. the obtained results are in good agreement with those pyrroles of nearly similar structure in the I.R. spectrum of the obtained pyrroles , the characteristic bands for SO_2 group of the sultam ring (1160 and 1315 cm^{-1}) are completely disappeared, indicating the splitting of the SO_2 group of the sultam and conversion to pyrroles. the other absorption bands are observed at their expected positions, for the aromatic C-H stretching at (3025 cm^{-1}), for the two methyl groups attached to the pyrrole ring at ($2850-2980 \text{ cm}^{-1}$) and for the conjugated diene system at (1490 and 1590 cm^{-1}), while the N-C stretching appeared at 1140 cm^{-1} .

* Noticing

Scheme (I) we found that sultams (1, 2 and 3) give the pyrroles (4, 5 and 6) respectively.

In conclusion, the proposed experimental techniques that have been used in current studies are quite simple. The importance of the present investigation is to demonstrate the possibility of using a method depend on removable of SO_2 – group from the corresponding sultams through heating in the presence of copper metal to synthesized several of new N-aryl-2,4-dimethyl pyrroles.

Acknowledgement

My deepest appreciation and gratitude to Assistant Professor Dr. Yahya Jirjees Salman, Vice dean for scientific affairs, Faculty of Dentistry, University of Kirkuk, for the thorough revision to the full text of the manuscript.

References

1. Well, E.D.; Synthesis of Sultones from Hexachlorobicyclo[2.2.1]heptenes and heptadienes, *J. org. chem.*, 1964, 29, pp. 1110.
2. Treibs, W.; Über Sulfonsäuren von Terpenen und Sesquiterpenen, I. Mitteil., Der Cyclo- pulegenol-sulfonsäure-ester und sein Übergang in Menthofuran, *chem. Ber.*, 1937, 70, pp. 85.
- 3a. Smith, C.W.; Norton, D.G.; and Ballard, S.A.; Reactions of Acrolein and Related compounds, *J. Amer. chem. Soc.*, 1953; 75, pp. 748.
- 3b. Liu A.P.; TANG M.; Liu X.; Synthesis, insecticidal and acaricidal activities of novel 2-arylpyrroles, *Science China Chemistry*, 2013, vol. 56, No. 1, pp. 117-123.
4. Erdmann, H.; Preparation of 1,8-naphthosultone, *Justus Liebigs Ann. Chem.*, 1888, 247, pp. 306.

5. Helferich, B.; Dhein, R.; Geist, K.; Jünger, H.; and Wiegle, D.; Über Sultame, II. Synthese von Butadien-(1,3)-sultamen-(1,4), Liebigs Ann. Chem., 1961, 646, pp. 34.

6. Fanghanel, E.; Mohamed, H.; Keita, Y.; and Radeglia, R.; Zur Strukturaufklärung der Bromierungsprodukte von N-Aryl-2,4-dimethyl-buta-1,3-dien-sultamen-1,4, Journal prakt. Chem., 1982, 324, pp. 353.

7. Daoud, K.M.; Ahmad, N.G.; and Butrus, N.H.; Structural studies of some bithiazinesultams using H-NMR spectroscopy. Journal of Education and Science, 2000, vol. 46.

8. Morell, T.; and Verkade, P.E.; Methods of Synthesis of β -Substituted Furan Derivatives, Rec. Trav. chim., 1948, 67, pp. 539.

9. Helferich, B.; and Zeid, I.; 60, 90 and 250 MHz ^1H NMR spectra of sultams and sultones, chem. Abs., 1968, 69, 96118t.

10. Mohammad, H.A.; and Rostam, R.B.; 1997, Synthesis and spectroscopic characterization of some N-aryl-2,4-dimethylpyrroles. 3rd Scientific Conference of university of Salahalddin-Erbil.

11. Shireen I. H.; Kareem Sh. A.; Hassan A. M.; IOSR Journal of Applied Chemistry, 2012, 2, 4, PP 01-09

12. Gorewit, B.; Myron R.; J. Org. Chem., 1973, 38 (12), pp 2257.

13. Robert, B.; Scott, Jr.; Heller, M.S.; Journal of Organic Chemistry, 1966, 31, pp. 1999.

14. Champseix, A.; Le Berre, A.; Masson, J.; Napierale, C., Vessiere, R., Syntheses de β -sultames (thiazetidines-1,2-dioxyde-1,1), Bulletin de la Societe Chimique de France, 1985, pp. 463.

15. Mielniczak, G.; Łopusiński, A.; Synthesis of 2-phosphoro-1,2-thiazetidine1,1-dioxide, Heteroatom Chemistry, 1999, 10, (1), pp. 61.

How to cite this article:

Hussein Habeeb Mustafa. 2016. Synthesis and Study of New N-Aryl Pyrroles. *Int.J.Curr.Microbiol.App.Sci*.5(2): 746-751. doi: <http://dx.doi.org/10.20546/ijcmas.2016.502.084>