As the first step in this direction; biosynthesis and characterization of zinc oxide nanoparticles (ZnO-NPs) and their use to ameliorate the toxic effects of aflatoxicosis in rabbit in comparison with curcumin were studied. Thirty-five healthy New Zealand rabbits were divided into 5 groups, each including 7 rabbits. Group 1 was kept as negative control without any treatment. Rabbits in the groups 2, 3, 4 and 5 were given AFB$_1$ orally at a dose of 50 ug dissolved in 0.5 ml of olive oil/ animal daily, for 4 weeks. On day one following the administration of AFB$_1$, curcumin was orally administered at a dose of 15 mg/kg b.w. for group 3. While, animals of Group 4, were orally administered AFB$_1$ + ZnO-NPs (25 ug / kg of B.W. of animal /0.2 mL of buffer/day)(low dose). Animals of Group 5, were orally administered aflatoxins + ZnO- NPs (50 ug / kg of B.W. of animal /0.2 mL of buffer/day) (high dose). The biochemical evaluation of rabbit sera after experimental study showed that AFB$_1$ increased the concentration of NO and MDA, while decreased the level of GSH and activities of SOD, CAT and GSH-Px. Significant decreased values in plasma total protein, albumin, alpha globulin, beta globulin, and gamma globulin. Decrease in serum globulin in toxin fed group might be due to the adverse effect of aflatoxin B$_1$ on synthesis of total proteins and globulin. The AFB$_1$ had a drastic effect on liver and kidneys with marked genotoxic effect and inhibition of DNA, RNA and protein synthesis. These changes were improved by administration of ZnO-NPs or curcumin to aflatoxicated animal through the immune strengthening effect and protection of lipid and protein from oxidative damage. It is concluded that the addition of ZnO-NPs and curcumin to animal feed possesses hepato-protective effect through scavenging of free radicals, or by enhancing the activity of antioxidant, which then detoxify the free radicals. These factors protect hepatic cells from the damaging effect by AFB$_1$ that could be progress to hepatocarcinma.
Introduction

The most potent mycotoxin to human and animal health is aflatoxin B₁ (AFB₁); the secondary metabolite of *Aspergillus flavus and A.parasiticus* that grow on a variety of food and feed commodities at any stage during growth, harvest, storage, and transportation (Henry *et al*., 2000). Aflatoxin B₁ (AFB₁) has a great concern because of its detrimental effects on the health of humans and animals, including carcinogenic, mutagenic, teratogenic, and immunosuppressive effects (Fernandez *et al*., 2001).

In developing countries; it appears that there is a direct correlation between dietary aflatoxins intake and the incidence of liver cancer (FDA, 2000, Bahtnager *et al*., 2002 and Refai and Hassan, 2013). In addition, it has been well documented that AFB₁ leads to liver-specific carcinogenicity through induction of a guanine (a purine) to thiamine (a pyrimidine) substitution at codon 249 on the p53 gene (Verma *et al*., 2004).

Also, AFB₁ is able to induce reactive oxygen species (ROS) generation during the metabolic processing of AFB₁ by liver enzymes (Kanbur *et al*., 2001), which causes oxidative stress, leading to oxidation of proteins, lipids and DNA (Mary *et al*., 2012). Therefore, numerous physical, chemical and biological methods had been proposed to detoxify or inactivate aflatoxins in contaminated feedstuffs.

Recently, the nano minerals are widely used in diversified sectors including agriculture, animal and food systems. The nano-sized particles having higher potential than their conventional sources and thus reduce the quantity required (Patil *et al*., 2012 and Sri Sindhura *et al*., 2014). They have more significant growth promoting, immunomodulatory, antibacterial effects than the conventional counterparts. They also alter the rumen fermentation pattern on supplementation in the animal feeds, nano minerals are reported to enhance the reproduction in the livestock and poultry (Partha *et al*., 2015) and also Zn-NPs were found to enhance growth and improve the feed efficiency in piglets (Yang and Sun, 2006) and poultry (Lina *et al*., 2009 and Mishra *et al*., 2014).

Moreover, ZnO-Nps improve the immunity of the animals as the reduction in somatic cell count in subclinical mastitic cow and an increase in milk production were observed due to supplementation of ZnO-Nps (Rajendran, 2013).

On the other hand, Curcumin is a phytochemical material and considered as an active component of the spice turmeric obtained from the rhizome of the Curcuma longa plant. It has been widely used throughout history for the treatment of diverse ailments that include inflammatory conditions, gastrointestinal disorders, and cancer (Goel *et al*., 2008). Moreover, curcumin is known for its antioxidant properties and acts as a free radical scavenger by inhibiting lipid peroxidation and DNA oxidative damage (Jayaprakasha *et al*., 2006).

Therefore, the present study was undertaken to evaluate human food and animal feed for aflatoxins contamination and production of aflatoxins by *A.flavus* that isolated from animal and poultry feeds.

The biosynthesis, characterization of ZnO-Nps by scanning electron microscope (SEM) and evaluation of their efficacy in ameliorating the toxic effects in aflatoxicated rabbits in comparison with curcumin were investigated.
Materials and Methods

Feed and Food Samples

One hundred and twenty samples of human food (frozen meat and raw milk) and animal feed (poultry feed, yellow corn, hay and tibn) (20 of each), were collected from different markets and animal farms in Egypt. Samples were aseptically transferred into sterile polyethylene bags without delay and transported to the laboratory for detection of their aflatoxins content.

Laboratory animals: Thirty-five healthy New Zealand male rabbits, aged 6-8 weeks and weighing between 1 and 1.5 kg were used. The rabbits were housed individually in wire cages and fed with commercial pellet feed and the water was supplied ad libitum.

Production of aflatoxins on yellow corn and their estimation (Smith, 1997):

The aflatoxigenic A. flavus strains that were recovered from feed and food samples were screened for aflatoxin production on yellow corn. In a flask containing 100 gm of finely ground yellow corn and 40-50 ml of distilled water were mixed and autoclaved at 121°C for one hour. The flask was shaken to prevent cooking of yellow corn. It was inoculated with spore suspension of 2 slants of A. flavus and incubated for 4 weeks at 25-28°C. After end of incubation period, the corn was removed from flasks, dried; finely ground and 50 g of each were subjected for estimation of aflatoxins. The estimation of prepared aflatoxins was measured qualitatively by TLC according to the recommended method of AOAC (1990) and Refai and Hassan, (2013).

Biosynthesis, identification and characterization of zinc oxide nanoparticles: (Hartsel and Bolard, 1996) : The spore suspension of Candida albicans (10^5/ml) of 2-5 days age cultures was inoculated into 50 mL of semi defined medium (SDM) and incubated at 30°C under shaking condition (200 rpm) for 96 hrs.

Mycelia were separated from the culture broth by centrifugation at 4500 rpm, 10°C, for 15 min. The settled cells were washed with deionized water. 1% of the washed C. albicans cells were inoculated into flasks containing 100 ml of Sabouraud broth medium incubated for 24 hours at 30° C and treated with 1.0% NaCl.

Biosynthesis, identification and characterization of zinc nanoparticle (Hartsel and Bolard, 1996):

Preparation of C. albicans cells culture (Hartsel and Bolard, 1996) : The spore suspension of Candida albicans (10^5/ml) of 2-5 days age cultures was inoculated into 50 mL of semi defined medium (SDM) and incubated at 30°C under shaking condition (200 rpm) for 96 hrs.

Mycelia were separated from the culture broth by centrifugation at 4500 rpm, 10°C, for 15 min. The settled cells were washed with deionized water. 1% of the washed C. albicans cells were inoculated into flasks containing 100 ml of Sabouraud broth medium incubated for 24 hours at 30° C and treated with 1.0% NaCl.

Biosynthesis, identification and characterization of zinc oxide nanoparticles: (Awodugba and Ilyas (2013) and Shamsuzzaman et al.(2013): Twenty-five ml of the above prepared culture of C.albicans were taken in a separate sterilized flask and 20 ml aqueous solution of 1 mM zinc oxide were added to the culture broth and the flask was kept at 30° C for 24 h until white deposition started to appear at the bottom of the flask, indicating the initiation of transformation of zinc oxide to zinc nanoparticles.

The culture solution was cooled and incubated at room temperature in the laboratory ambience. After 12-15 hours, white clusters deposits at the bottom of the flask. The reaction mixture was subjected to centrifugation for 15 min. The sediment was collected, washed by deionized water and filtrated through Whatman filter paper No. 1 and the filtrate was discarded.

The obtained powder in the filter paper was dried in hot oven at 50-60 °C. The prepared ZnO-NPs sizes and morphology were observed and measured under transmission electron micrograph (TEM) HITACHI H-800 (Hitachi) and scanning electron microscope (SEM) (Joe, JSM-5600LV,
Japan).

Experimental Design (Neeta and Ramaje, 2007; Sahoo et al., 2014 a&b and Partha et al., 2015)

The induction of hepatotoxicity by aflatoxicosis and ameliorated their effects by ZnO-NPs and Curcumin in rabbits were investigated.

Thirty-five healthy New Zealand male rabbits were divided into 5 groups, each including 7 rabbits. Group 1 was kept as negative control without any treatment. Rabbits in the groups 2, 3, 4 and 5 were orally given AFB\(_1\) at a dose of 50 \(\mu\)g dissolved in 0.5 ml of olive oil/animal/day, using stomach tube, for 4 weeks. On day 1 following the administration of AFB\(_1\), curcumin was orally administered at a dose of 15 mg/kg b.w. for group 3. While, animals of Group 4, were orally administered aflatoxin B\(_1\) + ZnO-NPs (25 \(\mu\)g/kg of B.W./0.2 mL of buffer/day)(low dose). While, animals of Group 5, were orally administered aflatoxins + ZnO-NPs (50 \(\mu\)g/kg of B.W./0.2 mL of buffer/day) (high dose). All the treatments were given orally using a feeding tube attached to a hypodermic syringe (Çam et al., 2008). The experimental study was extended for further 4 weeks.

Biochemical Analysis

Serum and plasma parameters

At the end of the experiment, two blood samples were collected from each group into small-labeled dry and clean vials with or without anticoagulant. Blood samples were centrifuged (3000 rpm, 10 min) and the plasma and serum were separated for biochemical parameters. The levels of aspartate amino-transferase (AST), alanine aminotransferase (ALT) were measured according to (Reitman and Frankel, 1957). Plasma Nitric oxide (NO) levels were measured by enzymatic Greiss reaction method described by Green et al. (1982). Triglyceride according to Wahlefeld (1974) and cholesterol according to Watson (1960), Whereas, the estimation of plasma total protein and electrophoretic pattern were carried out according to Davis (1964) and SonnenWirth and Jaret (1980), respectively and calculated according to Syn Gene S. No. 17292*14518 sme*mpcs

Lysate preparation and assays of antioxidant parameters

RBCs were separated from plasma by centrifugation, washed three times with saline and lyzed (Tietz, 1996). The lysate was mixed with an equal volume of Drabkin’s reagent to determine hemoglobin levels (Van Kampen and Zijlstra, 1965). Catalase activity; lipid peroxidation as malonaldehyde (MDA) and reduced glutathione (GSH) in lysated RBCs were determined according to Aebi (1974), Okhawa et al., (1979) and Ellman (1959), respectively. Also SOD according to Nishikimi et al. (1972), GSH-px according to Paglia and Valentine (1967) and GSH-R according to Goldberg and Spooner (1983). The obtained results were calculated as U/gHb, U/gHb, U/mgHb, U/gHb, U/gHb and nmol/gHb, respectively, for SOD, GSH-px, GSH-R and CAT activities, and GSH and MDA levels.

Pathological Examination

Pathological examination; tissue specimens from livers and kidneys were taken, from different groups, after ethical scarifying and careful post mortum examination; and divided into 2 halves (formallin fixed and frozen). One half was preserved in 10% formalin. Formalin-fixed tissues were
dehydrated in alcohol, cleared in xylene and embedded in paraffin wax. Sections of 4-5
um were stained routinely with hematoxyline and eosin (H&E) according to
Suvarna et al. (2012).

Set of sections was cut on positive charged slides for IHC technique, using Poly (ADP-
ribose) polymerase (PARP) -Ab. IHC/DAB kit (Acu-Stain™ Mouse+ Rabbit HRP kits) was purchased from Genemed (Biotechnologies, Inc.). Procedures were applied according to kits’ instructions.

Frozen half of the tissues were used to estimate the genotoxicity using alkaline Comet assay according to Singh et al. (1988).

Statistical Analysis

Results were expressed as means ± standard errors. Data obtained were analyzed using one way analysis of variance (ANOVA) according to SPSS 14 (2006) values with P ≤ 0.05 were considered as significant.

Results and Discussion

In the present work, one hundred and twenty samples of frozen meat, raw milk, poultry feed, yellow corn, hay and tibn (20 of each), were collected from different markets and animal farms in Egypt. The samples were examined for detection of aflatoxin residues and the obtained results tabulated in (Table 1).

The current results revealed that the incidence of aflatoxins (Af) residues in animal feeds was comparatively higher than human food. Where, the Af residues were detected in 80% of poultry feeds and tibn samples, all samples of the yellow corn and hay were contaminated by Af (100%). Whereas, Af residues were detected in 50% and 30% of frozen meat and raw milk samples, respectively. However, the highest mean values of aflatoxins residues were detected in animal and poultry feeds as in hay samples the detected mean value was (230±1.63 µg/kg), followed by tibn (120 ± 1.89 µg/kg), poultry feed (97.5± 1.63 µg/kg) and yellow corn (31±1.36 µg/kg), respectively. Whereas, the comparatively lower levels were detected in human food of animal origin as frozen meat (9.2±0.71 µg/kg) and raw milk (3.0±0.1 µg/kg), respectively.

The mycotoxins are natural contaminants of foods and feeds even when the most efficient condition of culture, harvest, storage and handling are used. The prevalence of these toxins in feed samples varies depending on geographical location and season of the year and the specific qualities of climate, vegetation and land are the important factors in connection with certain geographical location the air with the wind or in combination of wind and rain (Mikulec et al., 2005).

Nearly every food or feed commodity can be contaminated by fungal organisms and many of these fungi are capable of producing one or more mycotoxins, which are toxic metabolites of concern to human and animal health. It is estimated that 25 to 50% of the crops harvested worldwide are contaminated with mycotoxins. The percentage is highest in tropical regions, where, up to 80% of the crops are reported to contain significant amounts of mycotoxins (Refai and Hassan, 2013 and El-Hamaky et al., 2016).

There are many studies about whether or not the ingestion of meat, milk, and eggs originating from mycotoxin exposed food production animals is a significant pathway for mycotoxins among humans (Wafia and Hassan, 2000). In other study, Hassan et al.
(2010) detected aflatoxins in 30% of feed samples with the mean value of (3.4 ± 0.1 ppm). While, Hassan et al. (2012), reported that 60% of cattle blood had the mean levels of aflatoxins (15.20±0.01 ppb) and the used feed samples in breeding of these animals had the amounts of AFB1 detected in (60%) of feed samples, with the mean levels of (55.00±1.50 ppb). Whereas, El-Hamaky et al. (2016) screened one hundred feed samples for aflatoxigenic fungi and recovered 106 fungal isolates comprising, Aspergillus flavus, A. ochraceus and A. niger. Thirty three isolates of 47 A. flavus produced aflatoxin B1 and B2 at average levels of (170-750 ppb).

Food and Drug Administration (FDA, 1999) established regulatory working guidelines on the acceptable levels of aflatoxins in human foods and feeds set at 20 ppb for total aflatoxins, with the exception of milk which has an action level of 0.5 ppb of aflatoxins (Bullerman, 1979). The detected levels of aflatoxin residues in the present samples were compared with the international permissible limits of WHO (1979), FAO (1995) and FDA (1999). The main route of human exposure to mycotoxins has been identified as the direct ingestion of contaminated cereals, grains and food of animal origin (Morris et al., 1997). In the present study, human food of animal origin (some of frozen meat and milk samples) showed residues of aflatoxins more than the permissible limits of 15 ppb (WHO) and 20 ppb (FAO). While, all animal feeds were contaminated with aflatoxins residues more than the permissible limits of (WHO) and (FAO), thus its consumption can be resulted a health hazard for human and animal.

The effects of mycotoxins in human and animals varied from carcinogenic; nephrotoxic and immunosuppressive health effects (Hassan et al., 2009). In developing countries, it appears that there is a direct correlation between dietary aflatoxins intake and the incidence of liver cancer (FDA, 2000 and Bahtnager and Ehrlich, 2002). The exposure to AFB1 can result in suppressed immune response, malnutrition, proliferation of the bile duct, centrilobular necrosis, fatty infiltration of the liver, hepatic lesions and even hepatomas. It is one of the most commonly found metabolites and has a highest toxigenic effect (Richard, 2007).

Because aflatoxins contamination of food cannot be avoided, numerous detoxification strategies have been proposed to alleviate its impact. Antioxidants are compounds that can delay or inhibit the oxidation of lipids or other molecules by inhibiting the initiation or propagation of oxidizing chain reactions (Velioglu et al., 1998).

However, not only the emergence of chemical drugs and herbs resistance among different pathogenic strains and their toxins but also their high toxicity had prompted research on new antifungal and antimycotoxins agents (Mukherjee et al., 2003). Till up date, the metal of zinc was used as antioxidant feed additives for animals and human. Bio-nanotechnology has emerged for developing biosynthesis and environmental-friendly technology for synthesis of nano-materials. Among them, the metallic nanoparticles are most promising as they contain remarkable antimicrobial properties due to their large surface area to volume ratio, which is of interest to researchers due to the growing microbial resistance against metal ions, antibiotics and the development of resistant strains (Gong et al., 2007; Rai et al., 2009; Hassan et al., 2013 and Nabawy, 2015). Among nano- material Zn-NPs have gained more attention due to their special properties and less hazard to environment, however, like most of nano-particles, they are toxic to micro-organisms, which can be used as
antibacterial, antifungal and antiviral agents (Hosseini et al., 2011). In addition, Nano Zn improves the immunity of the animals, for an instance, a reduction in somatic cell count in subclinical mastitic cow and an increase in the milk production was observed due to supplementation of Zn-NPs (Rajendran, 2013).

In the present study, the biological synthesis of ZnO-Nps by fungal strains of Candida albicans was investigated. The appearance of white clusters deposited at the bottom of the flask indicated the reduction of metal ion and the formation of nano-particles has been taken place. Bio-reduction indicates the presence of reducing agent which served as electron shuttle in this reduction reaction and it was also reported that, fungus reduction was most probably either by reductase action or by electron shuttle quinones or both (Nelson et al., 2005). Moreover, this process can be easily scaled up, economically viable with the possibility of easily covering large surface areas by suitable growth of mycelia (Nelson et al., 2005).

The prepared ZnO-Nps were identified and characterized by visual inspection; in a UV-visible spectrophotometer and Scanned by Transmission electron microscope (TEM) and Scanning electron microscope (SEM) for detection of their particle size and the purity of the prepared powder. The particle size of prepared ZnO-NPs was 60 nm with spherical and granular morphology with uniform distribution (Fig., 1).

It should be noted that small-sized particles have a higher proportion of atoms on their surfaces than do bulk-sized particles, so the former is more reactive and responsive than the latter. However, this raises concern about the possible biological counterparts, which may have an adverse effect by interfering with biological functions, presumably due to their large surface area and enhanced reactivity (Sawai and Yoshikawa, 2004). Various nano-particles as zinc oxide (ZnO-NPs), gold NPs, carbon nano-tubes, and iron oxide nano-particles had been explored for improving bacteria and biofilm adhesion, penetration, generating reactive oxygen species and killing bacteria, potentially providing a novel method for fighting infections that is drug resistance (Taylor et al., 2011). Also, Zhang et al. (2007) detected that the adhesion of ZnO-NPs with fungal and bacterial cells causing membrane disruption through direct interactions or through free radical production.

Recently, they have significant growth promoting, immuno-modulatory, antibacterial effects than the conventional counterparts. They also alter the rumen fermentation pattern on supplementation in the animal feeds. A part from these nano-minerals are reported to enhance the reproduction in the livestock and poultry (Partha et al., 2015). Also, ZnO-Nps was found to enhance growth and improve the feed efficiency in piglets (Yang and Sun, 2006) and poultry (Mishra et al., 2009 and Lina et al., 2009).

Furthermore, Hassan et al. (2013) detected that the growth of aflatoxigenic moulds and aflatoxins production were inhibited by addition of 8μg/ml of ZnO-NPs; while that of ochratoxin A and fumonisins B₁ producing mould and mycotoxins production were inhibited by addition of 10μg/ml of ZnO-NPs to tested medium. On the other hand, Nabawy (2015) illustrated that ZnO-NPs was effective in the prevention of aflatoxin production by A. flavus in feed when nano-particles were added to it before contamination with A. flavus at the concentrations ranged from 50-250 ug/kg of feed.
In addition, it appears that nano-materials hold excessive potential to pass some of the barriers to efficient targeting of cells and molecules in many diseases Singh Suri et al. (2007) and Said et al. (2012). Nano-structural of ZnO has been used in the various biomedical applications in the modern world. Metal nano-particles are believed to be safe for applications because they are more stable and with salient properties (Zhao and Castranova, 2011).

As the first step in this direction, the ZnO nano-particles were used in our study to ameliorate the toxic effects of AFB1 in rabbits in comparison with traditional antimycotoxin (curcumin).

In the present study, the biochemical evaluation of rabbit sera after experimental aflatoxicosis and treatment with ZnO-NPs or curcumin were undertaken. The redox reaction in the animal body followed by imbalance and oxidative damage often leads to sub-clinical hepatitis, inflammatory necrotic hepatitis, liver cirrhosis and even cancer (Zhu et al., 2012). Our results showed that AFB1 increased the concentration of NO and MDA while, decreased the level of GSH and activities of SOD, CAT and GSH-PX in the serum rabbits (Table: 2).

The nitric oxide synthase is present in the liver parenchymal cells and Kupffer cells (Curran et al., 1989). While, nitrogen oxides can form nitro-cool acid, as reactive intermediates which causes necrosis of liver cells, inhibition of mitochondrial function and consumption of cell pyridine nucleotides, leading to breakdown of DNA. Also, nitric oxide and peroxynitrite ion radicals can combine to form hydrogen peroxide compound, and leading to cell damage (Diesen and Kuo, 2011). Increase in the MDA is an indicator of oxidative stress in both serum and liver. The activity of superoxide dismutases (SOD), glutathione peroxidase (GSH-PX) in chronic liver cirrhosis and hepatitis is significantly lower than control (Osman et al., 2007).

It could be concluded from our findings that the treatment with ZnO-NPs and curcumin possesses anti-hepatotoxic effect as evidenced by the significant and dose dependent decrease in lipid peroxidation (LPO) and increase in the level of antioxidant enzymes (GSH, CAT, SOD, GPx and GPr) through scavenging of free radicals, or by enhancing the activity of antioxidant, which then detoxify free radicals. These factors protect cells from ROS damaging effect in aflatoxicosis.

The mechanism could be attributed to dissociation of ZnO-NPs with subsequent increase in the tissue Zn concentration.

It is well known that Zn is a powerful antioxidant metal; it is the core constituent of antioxidant enzymes such as SOD and a recognized protector of sulfhydryl groups; it is also thought to impair lipid peroxidation by displacing transition metals such as iron and copper from catalytic sites (Bray and Bettger, 1990). ZnO-NPs are able to protect cell membrane integrity against oxidative stress damage, increase antioxidant enzyme levels, and decrease MDA level. It can improve antioxidant activity through enhancing the activities of antioxidases, and decrease the levels of free radicals (Dawei et al., 2009). Our results are in agreement with Sharma et al. (2012) who stated that ZnO-NPs can improve antioxidant activity, enhance the activities of antioxidases and decrease the levels of free radicals.

Currently, the biochemical changes in the sera of rabbit due to aflatoxicosis presented in table (3), showed a significant increase in
the serum activities (AST and ALT), cholesterol and triglyceride concentration. Similar findings were obtained by Hassan and Mogda (2003) in quails, Mogda et al. (2014) and Hassan et al. (2016) in rabbits. This may be due to necrosis of hepatic cells, as indicated by histopathological results, and resulted in the release of these enzymes into circulation (Lynch et al., 1971). Such hepatic toxic effect of aflatoxin attributed to its active metabolite in liver as epoxide (Netke et al., 1997), which covalently bind to DNA and may affect structural and enzymatic protein function (Culler and Newbern, 1994).

The results presented here suggest the protective effects of curcumin against the disorders induced by AFB₁ administration, which affected serum level of liver enzymes (AST, ALT), and cholesterol and triglyceride concentration (Table: 3).

It is suggested that the administration of Curcumin reversed the changes induced by AFB₁ supporting the hypotheses that plant products are effective anti-oxidative agents. Possible mechanism behind this is that the Curcumin scavenges or neutralizes the free radicals, interacts with oxidative cascade, quenches oxygen, inhibits oxidative enzymes like cytochrome P450, and chelates metal ions like Fe+2, inhibits peroxidation of membrane lipids and maintains cell membrane integrity and their function in the liver, lungs and kidneys (Sharma et al., 2011).

Moreover, our results detected that the AFB₁ induce significantly decreased values in plasma total protein, albumin, alpha globulin, beta globulin, fibrinogen and gamma globulin (Table 4). Decrease in serum globulin in toxin fed group might be due to the adverse effect of AFB₁ on synthesis of total proteins and globulin. These results in agreement with Osuna and Edds (1982) in pigs, Hassan and Mogda (2003) in quails and Mogda et al.(2014) and Hassan et al.(2016) in rabbits. Various studies illustrated that aflatoxins cause an inhibition of DNA and protein synthesis as well as immunosuppression due to the inflammation, cirrhosis of liver and renal-pathy (Harvey et al., 1991 and Salem et al., 2007). Also, aflatoxicosis decreased factors V, VII and VIII activity, fibrinogen concentration, platelet number and plasma fibrin monomers (Baker and Green, 1987).

Additionally, ZnO-NPs increase the level of zinc which is an important element for all aspects of the immunity (Sherman, 1992) and is critical for the integrity of the cells involved in the immune response (Dardenne et al., 1985); also Zn can improve humeral immune responses Zhenya (2013). In addition, ZnO-NPs improves the immunity of the animals due to supplementation of nano ZnO (Rajendran, 2013).

Currently, our study yielded that the globulin components showed drop in α1, α2, β1 and γ1 globulin in all of the treated groups, while, there was increase in β2 globulin as compared with healthy animals. The results coincided with the tune of total proteins and albumin. This may be attributed to that AFB₁ causes hepatotoxic, nephrosis, hemorrhages (liver and kidneys), which was explored in the histopathological results and in agreement with Tietz (1996). In addition, AFB₁ has immunosuppressive effect through inhibition of nearly all cellular and humeral immunologic factors Tietz (1996) and Hassan and Mogda (2003). Decrease in serum globulin in toxin fed group might be due to the adverse effect of AFB₁ on synthesis of total proteins and globulin (Mogda et al., 2014 and Hassan et al., 2016) in rabbits.
The hazardous effect of AFB₁ was suspected to its ability to induce oxidative stress and distortion of antioxidants enzymes (Alm-Eldeen et al., 2015 and Hassan et al., 2016), with subsequent lipid peroxidation and DNA damage (El-Agamy, 2010), so that hazardous effect could be mitigated by antioxidants (Souza et al., 1999). In the present study we evaluate Curcumin as an herbal medicine having a bi-functional effect in alleviating the aflatoxicosis effect; depending on its ability to react directly with reactive species and indirectly through up-regulation of various cytoprotective and antioxidant proteins (El-Bahr, 2015) in comparison with ZnO-NPs.

Clinical investigation revealed noticeable decrease in the animal body weights of aflatoxicated group. Careful post mortem examination of liver and kidneys revealed slight enlargement with paleness in of the liver and kidneys in the aflatoxicated group which directed to normal appearance in the treated groups.

The histopathological investigation, of the current study, detected high incidence of hepatocytes degeneration, in aflatoxicated groups, ranged from severe vacuolar degeneration to cell death with features of both apoptosis and necrosis (Fig.2). These cytopathic features could be attributed to the pathological status generated by AFB₁ through production of high level of ROS which are capable of damaging cell compounds as well as membranes (El-Agamy, 2010), eventually leading to the impairment of cell functioning and cytolysis (El-Nekeetya et al., 2014). While, rising in the mitochondrial matrix free Ca²⁺ concentration lead to matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death through convey both apoptotic and necrotic death signals (Rasola and Bernardi, 2011).

In curcumin treated group, there was a noticeable improvement of the hepatocytes status with moderate stage of vacuolar degeneration. Some degenerated foci exhibited features of regeneration in form of bi-nucleated hepatocytes (Fig.3). Fu et al. (2008) explained the protective effect of curcumin on the hepatocytes through suppressing hepatic inflammation and attenuating hepatic oxidative stress.

In the present investigation, ZnO-NPs at two level doses showed diverse biological effects. Where, zinc considered as an essential trace element had a critical biological role at the level of enzymes, protein and molecules including RNA and DNA with an additional regulatory role of apoptosis (Hambidge and Krebs, 2007). The beneficial role of ZnO-NPs appeared in our study, at low dose level, in form of mitigation the degree of hepatocytes vacuolar degeneration, associated with increase in the incidence of hepatocytes bi-nucleation (Fig.4). While, high dose of ZnO-NPs exhibited marked cytopapthic effect on hepatocytes in from of vacuolar degeneration and increase in the incidence of necrotic foci (Fig.5), which could be attributed to the persistence of cell membrane lipid peroxidation status with cell membrane disruption (Guan, et. al., 2012); and continuous cytosolic Zn²⁺ elevation lead to its sequestration by the mitochondria and collapse of the mitochondrial membrane potential and dysfunction followed by caspase activation and cell apoptosis (Kao et al., 2012); on the other side DNA oxidative damage lead to necrotic end result, these are in accordance with the findings of Sharma et al. (2012) and similar to the results of our study.

Another suspected mode of ZnO-NPs induced cytotoxicity is indirectly, through
saturation of the oxidative defense compounds, which are unavailable to bind other transition metal ions (Watson, et al., 2015).

Where, AFB$_1$ control group had a well-developed portal-portal bridging in between hepatic lobules (Fig.6) and portal triad's fibrosis which is a hallmark of aflatoxicosis (Fig. 7). In this study we used PARP, as an indicator, to investigate the association between ROS production and induction of genotoxicity on the variety of hepatic cells with the fibrosis as an outcome. Our result referred to the oxidative genotoxic effect of AFB$_1$ on both of hepatocytes and non-parenchymatous cells (Fig.8).

Neither portal-portal bridging formations (Fig.9) nor portal triad's fibrosis (Fig.10) could be detected in curcumin treated group. This beneficial effect of the curcumin, in agreement with the findings of Pinlaor et al. (2010), their study revealed that curcumin alleviated periductal fibrosis due to its anti-inflammatory property (Lin, et al., 2009) and a modulator effect on cytokine TGF- β1 (Mourad, et al., 2006) and EMT-transcription factors (Kong et al., 2015) with end result of tissue restoration (Pinlaor et al., 2010). Lin et al. (2009) suggested that curcumin exerted antifibrotic effects, possibly through two different mechanisms depending on its concentrations. At lower concentrations curcumin exerted antifibrogenic effects, whereas at higher concentrations curcumin induce fibrosis through induction of apoptosis in hepatic satellite cells (HSCs). Our results could add that protective effect of curcumin on liver cells through the mitigation of aflatoxicosis ROS induced genotoxic effect mainly on non-parenchymatous cells, as parenchymatous cells react positively with PARP (Fig.11), that in accordance with findings of Sun and Peng (2014), who stated that curcumin had potent anti-fibrosis activity, contributing to the inhibition of HSCs activation as a result of increasing in the level of cellular GSH.

Similar beneficial effect was detected in ZnO-NPs/low dosed group which showed absence of portal-portal bridging (Fig.12) associated with marked reduction in the incidence of genotoxicated non-parenchymatous cells along the portal areas (Fig.13) with a subsequent inhibitory effect kupffer cell activity (Watson et al., 2015) and induction of its cell myofibroblastic transformation (Xidakis et al., 2005).

Whereas, ZnO-NPs/high dosed group had signs of portal-portal bridging formation with neo-vascularization of sinusoids (Fig.14) in addition to massive increase in the parenchymal fibrocytes which enclosed newly proliferated bile ductules and hepatic arterioles in the portal triad's areas. Also, periductul fibrosis, in high dosed-group, might be reflecting the biliary excretion of ZnO-NP (Paek et al., 2013) with induction of fibro-genic effect, due to persistence the ROS-induced genotoxic effect on non-parenchymatous cells, which was detected in our study (Fig.15).

The present study revealed the renal cytopathic effect of AFB$_1$ in form of marked enlargement of the glomerular tufts and increase in their cellularities, which lead to obliteration of the urinary spaces (Fig.16) (Rubin and Strayer, 2008 and Hassan et al., 2016). Another common feature was cystic dilation of the distal convoluted tubules, while proximal convoluted tubules suffering from severe hydropic degeneration with high incidence of coagulative necrosis (Fig.17). In curcumin, ZnO-NPs/low and ZnO-NPs/high doses treated groups renal features revealed moderate to marked (respectively) improvement in the AFB$_1$ -
toxicated renal structure, with reduction in the incidence of coagulative necrosis of renal tubular lining epithelia.

Desquamated epithelia were detected as cellular cast formation in the renal medulla, these findings correlated with the findings of Al- Ghasham et al. (2008). In our study, the severity of desquamation of tubular lining epithelia lead to cellular casts' formation associated with increasing in the dose of ZnO-NPs (Fig.18), which is in accordance with the findings of Esmaeilou et al. (2013). Yan et al. (2012) , explain that effect of ZnO-NPs/high dose associated nephrotoxicity to the disruption in the energy metabolism with subsequent mitochondrial dysfunction with impairment of the cell membrane, ending by necrosis of tubular epithelial cell lining.

Table.1 Aflatoxin residues (ppb) detected in examined food and feed samples (n=20)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Total Aflatoxins Residues (ppb)</th>
<th>Positive</th>
<th>% of Positive</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean±SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frozen meat</td>
<td>10</td>
<td>50</td>
<td>5.5</td>
<td>20</td>
<td>9.2±0.71 ppb</td>
<td></td>
</tr>
<tr>
<td>Raw milk</td>
<td>6</td>
<td>30</td>
<td>0.5</td>
<td>19</td>
<td>3.0±0.1 ppb</td>
<td></td>
</tr>
<tr>
<td>Poultry feed</td>
<td>16</td>
<td>80</td>
<td>50</td>
<td>250</td>
<td>97.5±1.63 ppb</td>
<td></td>
</tr>
<tr>
<td>Yellow Corn</td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>50</td>
<td>31± ppb</td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td>20</td>
<td>100</td>
<td>40</td>
<td>400</td>
<td>230±1.63 ppb</td>
<td></td>
</tr>
<tr>
<td>Tbin</td>
<td>16</td>
<td>80</td>
<td>40</td>
<td>200</td>
<td>120±1.89 ppb</td>
<td></td>
</tr>
</tbody>
</table>

The permissible limit of Aflatoxins is > 15 ppb as WHO(1979) and > 20 ppb as FAO (1995) & FDA (1999)

Table.2 The effect of AFB1 and the investigating agents on the antioxidant parameters of the serum and the blood lysate of the rabbits

<table>
<thead>
<tr>
<th>Group Parameter</th>
<th>Control</th>
<th>AFB1</th>
<th>ZnO-NP (25 ug/kg b.w)</th>
<th>ZnO-NP (50ug/kg bw)</th>
<th>Curcumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO m mole/l</td>
<td>18.23±0.26</td>
<td>28.40±0.60</td>
<td>20.80±0.73</td>
<td>25.20±0.58</td>
<td>22.80±0.37</td>
</tr>
<tr>
<td>MAD nmole/mg Hb</td>
<td>1.67±0.05</td>
<td>2.90±0.04</td>
<td>1.83±0.02</td>
<td>2.31±0.06</td>
<td>1.94±0.02</td>
</tr>
<tr>
<td>GSH nmole/mg Hb</td>
<td>15.03±0.19</td>
<td>10.60±0.24</td>
<td>13.37±0.17</td>
<td>12.26±0.11</td>
<td>12.79±0.09</td>
</tr>
<tr>
<td>GSH- R(u/mgHb)</td>
<td>7.53±0.29</td>
<td>4.68±0.10</td>
<td>6.87±0.03</td>
<td>5.26±0.10</td>
<td>6.29±0.07</td>
</tr>
<tr>
<td>GHSpx (u/mgHb)</td>
<td>7.03±0.15</td>
<td>3.13±0.16</td>
<td>5.00±0.12</td>
<td>3.97±0.18</td>
<td>4.76±0.08</td>
</tr>
<tr>
<td>SOD (u/mgHb)</td>
<td>88.20±5.07</td>
<td>54.60±0.75</td>
<td>80.20±1.11</td>
<td>59.20±1.69</td>
<td>75.60±1.03</td>
</tr>
<tr>
<td>CAT (u/mgHb)</td>
<td>18.76±0.85</td>
<td>11.72±0.53</td>
<td>15.46±0.18</td>
<td>12.82±0.22</td>
<td>14.12±0.09</td>
</tr>
</tbody>
</table>

Values are Mean±SE. Values across the table with similar superscript are not significantly different at 5% based on ANOVA test and letters mean the significant differences between treatments according to Duncan’s test.
Table 3 Showing the serum biochemical parameters in different groups of rabbits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>AFB1</th>
<th>ZnO-NP (25 ug/kg b.w)</th>
<th>ZnO-NP (50ug/kg bw)</th>
<th>Curcumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST u/l</td>
<td>55.0±1.82</td>
<td>100.4±1.96</td>
<td>66.0±1.38</td>
<td>84.8±0.86</td>
<td>67.0±1.52</td>
</tr>
<tr>
<td>ALT u/l</td>
<td>26.0±1.22</td>
<td>73.6±0.87</td>
<td>44.6±1.21</td>
<td>64.6±0.93</td>
<td>50.0±0.84</td>
</tr>
<tr>
<td>Cholesterol mg/dl</td>
<td>80.2±1.59</td>
<td>109.2±1.39</td>
<td>82.00±2.81</td>
<td>87.60±1.96</td>
<td>81.80±0.66</td>
</tr>
<tr>
<td>Triglyceride mg/dl</td>
<td>53.6±1.03</td>
<td>95.2±1.46</td>
<td>60.6±0.93</td>
<td>84.0±1.05</td>
<td>67.2±0.73</td>
</tr>
</tbody>
</table>

Values are Mean ± SE. Values across the table with similar superscript are not significantly different at 5% based on ANOVA test and letters mean the significant differences between treatments according to Duncan’s test.

Table 4 Total plasma protein (g/dl) and its electrophoresis in control and different groups of rabbits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>AFB1</th>
<th>ZnO-NP (25 ug/kg b.w)</th>
<th>ZnO-NP (50ug/kg bw)</th>
<th>Curcumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.P</td>
<td>7.12±0.07</td>
<td>5.57±0.68</td>
<td>6.17±0.28</td>
<td>5.99±0.30</td>
<td>6.52±0.19</td>
</tr>
<tr>
<td>Albumin</td>
<td>2.4±0.01</td>
<td>1.83±0.22</td>
<td>2.12±0.05</td>
<td>2.05±0.10</td>
<td>2.24±0.11</td>
</tr>
<tr>
<td>Alpha1a</td>
<td>0.3±0.02</td>
<td>0.30±0.02</td>
<td>0.28±0.04</td>
<td>0.32±0.01</td>
<td>0.31±0.06</td>
</tr>
<tr>
<td>Alpha1b</td>
<td>0.46±0.06</td>
<td>0.32±0.03</td>
<td>0.35±0.02</td>
<td>0.34±0.05</td>
<td>0.38±0.04</td>
</tr>
<tr>
<td>Alpha2</td>
<td>0.37±0.06</td>
<td>0.28±0.04</td>
<td>0.28±0.04</td>
<td>0.30±0.03</td>
<td>0.32±0.01</td>
</tr>
<tr>
<td>Tt-alpha</td>
<td>1.22±0.06</td>
<td>0.90±0.03</td>
<td>0.93±0.02</td>
<td>0.96±0.04</td>
<td>1.01±0.10</td>
</tr>
<tr>
<td>Beta1</td>
<td>0.52±0.03</td>
<td>0.59±0.10</td>
<td>0.62±0.06</td>
<td>0.61±0.06</td>
<td>0.66±0.01</td>
</tr>
<tr>
<td>Beta2</td>
<td>0.81±0.06</td>
<td>0.40±0.02</td>
<td>0.50±0.08</td>
<td>0.43±0.03</td>
<td>0.53±0.04</td>
</tr>
<tr>
<td>T.beta</td>
<td>1.33±0.03</td>
<td>0.98±0.11</td>
<td>1.12±0.14</td>
<td>1.04±0.04</td>
<td>1.19±0.03</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>0.44±0.01</td>
<td>0.41±0.09</td>
<td>0.47±0.02</td>
<td>0.44±0.04</td>
<td>0.50±0.07</td>
</tr>
<tr>
<td>Gamma1</td>
<td>1.37±0.12</td>
<td>1.20±0.17</td>
<td>1.27±0.09</td>
<td>1.27±0.09</td>
<td>1.29±0.04</td>
</tr>
<tr>
<td>Gamma2</td>
<td>0.28±0.04</td>
<td>0.24±0.07</td>
<td>0.26±0.02</td>
<td>0.25±0.05</td>
<td>0.29±0.04</td>
</tr>
<tr>
<td>T.gamm</td>
<td>1.65±0.12</td>
<td>1.44±0.23</td>
<td>1.54±0.08</td>
<td>1.51±0.14</td>
<td>1.57±0.07</td>
</tr>
<tr>
<td>T.globulin</td>
<td>4.20±0.07</td>
<td>3.33±0.37</td>
<td>3.59±0.21</td>
<td>3.51±0.16</td>
<td>3.77±0.13</td>
</tr>
<tr>
<td>A/G</td>
<td>0.57±0.01</td>
<td>0.55±0.01</td>
<td>0.59±0.02</td>
<td>0.58±0.00</td>
<td>0.60±0.03</td>
</tr>
</tbody>
</table>

Values are Mean±SE. Values across the table with similar superscript are not significantly different at 5% based on ANOVA test and letters mean the significant differences between treatments according to Duncan’s test.
Fig. 1 The micrograph of the particles size of ZnO-NPs (60nm) (black dots) under SEM. (×20000)

Fig. 2: Aflatoxicated control group showing vacuolar degeneration and marked proliferation of bile ductules with features of apoptosis and necrosis. H&E X400

Fig. 3: Control group showed moderate stage of hydropic deg. with evidence of regeneration in form of bi-nucleated hepatocytes H&E X1000

Fig. 4: ZnO-NPs-low dosed group revealed moderate hydropic deg. Some hepatocytes had bi-nucleus (in set). H&E X400

Fig. 5: ZnO-up/ high dosed group, showed hydropic deg. with high incidence of necrotic foci (in set) H&E X400
Fig. (12): ZnO-NP/low dose group revealed absence of portal-portal bridging. H&E X400

Fig. (13): ZnO-NP/low dose revealing the reduction in the incidence of the positive reactivity of non-parenchymatous cells to PARP. peroxidase-DAB X200

Fig. (14): ZnO-NP/high dose with marked development of portal-portal bridging. H&E X400

Fig. (15): ZnO-NP/high dose showed strong reactivity of non-parenchymatous cells to PARP. peroxidase-DAB X200

Fig. (16): Aflatoxicated group with signs of glomerular tufts hyperplasticity. H&E X400

Fig. (17): Aflatoxicated group showing cystic dilatation with coagulative necrosis of proximal convoluted tubules. H&E X200

Fig. (18): Cast formation represent the common feature in all investigated groups. H&E X400
The genotoxic effect of AFB₁ and the susceptible protective effect of the evaluated therapeutic agents were estimated using Comet-assay in a comparative analysis. Comet assay (Fig.19:a) revealed severe genotoxic effect of AFB₁ which is attributed to its biotransformation and conversion into epoxide with DNA adduction causing DNA strand breaks (Al-Ghasham et al., 2008). Meanwhile, the induction of micronuclei, mainly in renal tissue (Fig. 20:a) could be attributed to the excretion of the formed AFB₁-N7-guanine adducts in the urine, that in accordance with Wang and Groopman (1999).

Regarding to curcumin, our study revealed significant genotoxic effect, on restricted population of hepatic cellular elements (Fig. 19; b). Cao et al. (2007) and Mendonca et al. (2009) stated that curcumin shows both genotoxicity and anti-genotoxicity depending on its concentration. The genoprotective role of curcumin, on non-parenchymatous liver cells, could be attributed to its inhibitory action on biotransformation of AFB₁ to their active epoxide derivatives (Lee et al., 2001). The same benefit effect was reported in renal tissue (Fig.20; b).

In their study, Wang et al. (2006), reported that; the damaging effect on DNA increase reversibly with the dose of ZnO-NPs, which not adapted with our findings that revealed increase in the hepatic (Fig. 19; c &d) and

<table>
<thead>
<tr>
<th></th>
<th>Fig.(19): Hepatic cells</th>
<th>Fig. (20): Renal cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB₁ group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curcumin group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnO-NPs/low dose group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnO-NPs/high dose group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
renal (Fig.20;c&d) protective effect in parallel with increasing in the dose of ZnO-NPs.

In Conclusion, as the first step in this direction, ZnO-NPs at low doses can improve antioxidant activity, enhance the activities of anti-oxidases and decrease the levels of free radicals that resulted from aflatoxicosis in rabbits. The ultimate cytoprotective effect of ZnO-NPs likely reflected by low concentration ZnO-NPs which keep the regulation of enzymes and proteins synthesis that essential for the integrity of the cell membranes. In addition, the biosynthesis preparation of nano-particles by saprophytic fungi is cost-effective and environmental-friendly. Similar findings resulted from use of curcumin plant. Further studies are urgently required to assure more safe doses of nanoparticles before field application in farm animals and poultry.

Acknowledgement

The authors are grateful to Dr. H.H. Mahmoud, Chairman of Laboratory of Elemental and Isotopic Analysis, Nuclear Research Centre, Atomic Energy Authority, Egypt, for his kind assistance and fund in identification and characterization of the prepared and used zinc oxide nano-particles.

References

Gong, P.; H. Li; X. He; K. Wang; J. Hu; S. Zhang and X. Yang, (2007): Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology, 18, No. 28, 1000-1010.

Nabawy, Gahan, A. (2015): Effect of metal element nanoparticles in the growth of aflatoxogenic A. flavus and aflatoxin production in feed, Master thesis in veterinary science (Microbiology), Faculty of Veterinary Medicine, Cairo University.
Partha S. S., Rajendran D., Rao, S.B.N. and...

Refai, M. K. and Hassan, A. A. (2013): Monograph On Mycotoxigenic Fungi and Mycotoxins in Foods and Feeds with Synopsis on studies done by authors on mycotoxigenic fungi and mycotoxins in foods and feeds.

Zhenya W (2013): Effect of dietary Enterococcus faecium NCIMB 10415 and zinc oxide on porcine influenza virus infection in vitro and in vivo Journal-Nr.: 3693

How to cite this article: