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Introduction 
 

The human body is home to trillions of microbes 

especially the intestinal compartment, where these are 

prevalent in maximum density to form the gut 

microbiota. Gut microbiota encompasses the cells of all 

the microbes whereas microbiome includes their genetic 

materials too. Gut microbiota is a dynamic and ever-

changing organ that is the most forgotten part of the body 

including trillions of bacteria, viruses, parasites, archaea, 

and fungi that make humans a superorganism. It varies 

with sex, age, race, and lifestyle habits such as smoking, 
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The potential of gut microbiome in health and diseases has emerged as an area of profound 

scientific research and clinical exploration that elucidates the correlation of human immune 

system homeostasis, and metabolic functions with altered diversity of gut microbiota. This 

further validates the underlying causes and consequences of variability in gut microbiome 

profiles in the development of autoimmune and inflammatory diseases such as rheumatoid 

arthritis, cardiovascular and respiratory illnesses, neurological disorders such as 

neurodevelopment disorders, autism spectrum disorders, attention deficit hyperactivity 

disorder, stroke, Parkinson’s disease, schizophrenia, Alzheimer’s disease, depression, 

gastrointestinal inflammations including irritable bowel syndrome, inflammatory bowel 

disease, ulcerative colitis, Crohn’s disease, Clostridium difficile infection, metabolic 

diseases including type 1 and type 2 diabetes mellitus, non-alcoholic fatty liver disease, 

liver cirrhosis, immunomodulation and certain types of cancers. Dietary interventions, 

fasting regimens, nutritional supplements, antibiotics, probiotics, prebiotics, synbiotics, 

postbiotics psychobiotics, bacteriophage, and fecal microbiota transplantation are the 

possible interventions that open avenues in the near future to exploit individual microbiota 

profiles in clinical practice as a biomarker for gut health of the patients who are at the risk 

of developing certain abnormalities and ailments attributed to dysbiosis. The knowledge of 

the present review on microbiome modulation-based therapeutic interventions to target 

enhanced human health comprehensively sheds light on how this upcoming field unveils 

the opportunities for improving human health and for preventing, treating and managing 

certain autoimmune diseases. 
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exercise, alcohol consumption, dietary habits, 

medications, geographical location, and temperature of 

the person. The microbial community starts to colonize at 

birth and is altered further during the life span of an 

individual based on the mode of delivery of the child, 

gestational age, breastfeeding, and infections.Exposure to 

xenobiotics and certain environmental factors such as 

level of oxygen, redox state, pH, temperature, and dietary 

nutrients in the gut additionally contribute to variations in 

gut microbiota (Spor et al., 2011; Milani et al., 2017). 

Besides these, sex hormones (Fransen et al., 2017), 

pharmaceuticals like proton pump inhibitors (PPIs) 

(Imhann et al., 2016) environmental intoxicants, 

treatment with antifungal and antibacterial agents 

(Wheeler et al., 2016) and consuming several prescribed 

drugs (Ticinesi et al., 2017) contribute to dysbiosis. The 

evolution of microbiota is through 

Proteobacteria,Actinobacteria and then to a stage where 

Bacteroides, Bifidobacterium,and Enterobacteriaceae are 

dominant to a group of Lachnospiraceae and 

Ruminococcaceae families of phyla Firmicutes, 

proteobacteria, Bacteroidetes, Actinobacteria and 

Verrucomicrobis with family Akkermansia and 

eventually to a more personalized microbiota as found in 

adults (Heiman and Greenway, 2016; Wu et al., 2011). 

 

These factors during pregnancy modulate the 

microbiome of offspring by regulating neurotransmitter 

pathways, signal transduction, and synaptic transmission 

(Lindsay et al., 2019). The study of microbiomes is 

important, concerning associated and correlated diseases, 

what are the causes, effects, and consequences of 

manipulations of gut microbiomes and how these 

interventions can be exploited for the possible 

development of novel, diagnostic, prognostic, and 

therapeutic strategies. Even the stage of the disease, risk 

assessment, and early diagnosis of the disease can be 

elucidated with the knowledge of these modulations 

(Fig.1).  

 

The gut microbiome not only contributes to the well-

being and diseases of the gut but also regulates the health 

of extra enteric organs such as the liver, pancreas, heart, 

brain, skin, bones, muscles, etc. It leads to the 

construction of the gut epithelium, its maintenance, and 

metabolism affecting energy balance, digestion of food, 

and development of the immune system and protecting 

against physiologic stress (Visconti et al., 2019; Adak 

and Khan, 2019). The gut microbiome plays a role in 

angiotensin II-induced vascular dysfunction and 

hypertension (Karbach et al., 2016). 

Gut microbiota plays a key role in the nutritional and 

metabolic functions of the host and determines immune 

homeostasis. It modulates the level of various 

neurotransmitters and neuromodulators, which induce 

intestinal epithelial cells to release molecules such as 

cytokines and hormones for modulating signaling 

pathways within the enteric nervous system thereby 

controlling cognitive abilities, brain function, and 

behavior of the person. The brain in turn can alter the 

composition and functioning of microbiota via the 

release of hormones and neurotransmitters to influence 

gut physiology and environment, where certain types of 

microbial population can thrive. This is mediated through 

the gut-brain axis. Some strains of these microbial 

populations mediate their impact on the brain via the 

vagus nerve. For example, gut microbiota controls the 

metabolism of precursors of the kynurenine pathway 

which along with serotonin can be derived from 

tryptophan. The metabolites of the pathway can modulate 

neurotransmission serving themselves as neuroactive 

molecules (Cryan and Dinan, 2012). Signals from the gut 

microbiome to the brain are mediated by several bacterial 

neuroactive metabolites like short-chain fatty acids 

(SCFAs), acetate, butyrate, and propionate (MacFabe et 

al., 2011). Non-digestible carbohydrates serve as a 

source of carbon and energy for SCFA production to 

influence body homeostasis (Cani and Jordan, 2018; 

Chambers et al., 2018). 

 

Dysbiosis is also correlated with irritable bowel 

syndrome (IBS), inflammatory bowel disease (IBD), 

Crohn’s disease, ulcerative colitis, colon cancer, non-

alcoholic fatty liver disease (NAFLD), liver cirrhosis, 

cardiovascular disease (CVD), neurological disorders, 

neurodegeneration, metabolic disorders such as diabetes 

type1 and type 2 (T1DM, T2DM), obesity and more 

chances of hepatitis B virus infections with 

complications related to liver cirrhosis, hepatic 

encephalopathy, bacterial peritonitis, and renal failure 

(Cohen, 2016; Ling et al., 2016; Lakshmi et al., 2010). 

Gutdysbiosis is also associated with chronic liver failure, 

hepatocarcinoma, fibrosis and mortalities due to specific 

inflammatory cytokines from specific bacterial families 

which lead to reduced pancreaticobiliary secretions, 

reduced intestinal motility, impaired intestinal barrier, 

increased intestinal permeability, decreased gastric 

acidity and activation of Toll-like receptors (TLRs) 

(Dapito et al., 2012). Gut dysbiosis can lead to 

endotoxemia that may induce immune dysfunctions 

leading to cell necrosis and hepatic failure (Boursier et 

al., 2016).  
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Besides playing a central role in immunomodulation, gut 

microbiota also regulates oxidative stress which brings 

about homeostasis of inflammations, and macrophage 

cell population in the central nervous system (Angoorani 

et al., 2021; Li et al., 2017; Baek et al., 2013; Sampson 

et al., 2016). Even increased abundance of 

Enterobacteriaceae, Fusibacteriaceae, Pasteurellacea, 

and Veillonellaceae and decreased levels of 

Bacteroidales, Clostridiales, and Erysipelotrichales 

during the analysis of IBD patient samples show a 

correlation with the status of the disease which paves the 

way for easy diagnosis and offers an opportunity for 

early treatment (Gevers et al., 2014). 

 

Microbiome-based therapies are still in the early stages 

of development due to the challenge of an undefined 

healthy microbiome, standardized microbiome sampling 

and analysis, safety and efficiency, undefined 

pharmacodynamics and pharmacokinetics, variability 

from individual to individual, less understood long-term 

side effects and less explored and less understood 

microbiome –host-environment cross-talk for health and 

disease management (Fig 2). 

 

The present review aims to elucidate the data correlated 

with possible interventions at one place to provide deep 

insight into strategies attributing to the modulation of gut 

microbiota composition for the health of the host and to 

understand the existing gaps in knowledge and to explore 

the possibilities of future therapeutics based upon 

personalized plans. 

 

Mechanism of Action of Gut Microbiota 
 

Bifidobacterium has been known as a key modulator of 

G1T helper 17 (Th17) cells besides maintaining barrier 

function to check the entry of pathogenic microbes. The 

role of gut microbiota in tumorigenesis is in addition to 

genetic factors. The possible mechanism includes the 

promotion of inflammations due to more expression of 

pro-inflammatory genes such as COX2, IL-6, IL-8, TNF-

α, and MMP3. However, Helicobacter pylori are known 

to play a protective role in the development of 

esophageal adenocarcinoma (Hamada et al., 2000).  

 

Enterotoxigenic Bacteroides fragilis leads to activation 

of Wnt/β-catenin signaling pathway and NF-κB 

producing inflammatory mediators via the release of a 

toxin known as fragilysin which causes cells to 

proliferate excessively (Sokol, 1999; Shiryaev et al., 

2013). Enterococcus faecalis and E.coli induce DNA 

damage by producing superoxides (Huycke et al., 2002). 

Gut microbiota also influences the circadian clock 

(Leone et al., 2015). Firmicutes and Clostridia 

abundance can resolve the issues of cow milk allergy if 

made present at the age of 3 to 6 months old. Clostridium 

sensu strictois responsible for IgE levels in serum (Ling 

et al., 2014; Atarashi et al., 2011). 

 

Clostridium species that belong to clusters IV, XIVa, and 

XVIII produce SCFAs and thereby induce Foxp3+, CD4+, 

and Treg cells (Atarashi et al., 2013) while Bacteroides 

fragilis binds to TLR2 (Toll-like receptor 2) of dendritic 

cells (DCs) to enhance immuno-tolerance through the 

production of cytokine IL-10 by regulatory T cells (Das 

Gupta et al., 2014). Short-chain Fatty Acids (SCFAs) 

produced by beneficial microbiota mediate their 

functions by activation of G-protein coupled receptors 

(GPCRs) such as GPR41 and GPR43. These also block 

the action of histone deacetylase (HDAC) (Zaibi et al., 

2010). SCFAs produce chemokines such as CINC-2 and 

MCP-1, cytokines like TNF-α, IL-10, IL-2, and IL-6 and 

help leucocytes to migrate to inflammation sites and 

destroy pathogens (Vinolo, 2011; Cox et al., 2009; 

Luster et al., 2005). SCFAs also cause apoptosis of 

lymphocytes, neutrophils, and macrophages (Aoyama et 

al., 2010; Bailón et al., 2010; Fei and Zhao, 2013) (Fig. 

3). 

 

Strategies 
 

Microbiota therefore is an essential organ of the human 

body and its total absence impairs social behavior leading 

to anxiety and stress response (Desbonnet et al., 2014; 

Foster et al., 2013). Various microbiome modulation-

based therapeutic strategies are to be followed for 

modulating gut microbiota towards a healthy one and 

form the body of the review (Fig.4).  

 

Dietary Interventions 
 

The dynamic ecosystem of gut microbiota depends upon 

various factors such as age, lifestyle, environment, 

genetic predisposition and mainly diet. Diet along with 

other factors impacts the gut microbiota and brain-gut 

axis, which in early stages help in protection against the 

onset and progression of disorders linked with 

development and mental health. Certain dietary 

interventions serve as alternative or adjuvant strategies 

for the management of neurodegenerative disorders 

(NDDs) emphasizing long-term consequences on health 

and aiming at their prevention and treatment.  
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Fat-rich diet 
 

Maternal high-fat diet-induced obesity during pregnancy 

can be managed by modifying the gut microbiota 

composition of the offspring thereby determining the 

socio-emotional behavior and cognitive abilities of the 

child (Rivera et al., 2015). Supplementation with 

Bifidobacterium breve strain from birth promotes the 

growth of the resident Bifidobacteria to mitigate negative 

consequences associated with C-section progeny such as 

social behavior and anxieties. Infants with longer 

duration of breastfeeding have increased levels of 

Bacteroides fragilis and Lactobacillus to restore health-

promoting microbiome in Caeserian-born progeny 

(Coker et al., 2021). Dietary supplementation of omega-

3-polyunsaturated fatty acids (PUFAs) in the early life 

period provides protection against neurological impair-

ments (Lei et al., 2013; Gow et al., 2013). 

 

A high-fat diet is known to alter the gut microbial 

composition and is associated with cognitive decline and 

ADHD (attention deficit hyperactivity disorder), yet 

pieces of evidence for ADHD management based upon 

gut microbiota-directed interventions need further 

confirmation (Fernandez-Real et al., 2015). However, 

prenatal and early infancy supplementation with 

Lactobacillus rhamnosus GG (LGG) shows a decreased 

risk of developing ADHD (Rianda et al., 2019). A high 

saturated fat dietalso leads to an increase in 

Proteobacteria and Firmicutes and a decrease in 

Bacteriodetes, increasing gut permeability, insulin 

resistance, and adipose tissue inflammation (Malesza et 

al., 2021). 

 

Milk fat intake causes gut inflammation due to the 

thriving of sulfate-reducing bacteria (Devkota et al., 

2012). Monounsaturated fatty acids (MUFAs) enhance 

the richness of Prevotella, Enterobacteriaceae family 

members, Parabacteroides, and Turicibacter genera 

showing positive health effects and increasing diversity 

of gut microbiota (Wolters et al., 2019). A diet rich in 

coconut oil increases Lactobacillus, Allobaculum, 

Clostridium, Staphylococcus, and Firmicutes hence 

adipose tissue inflammation (de Moura e Dias et al., 

2018). Polyunsaturated fatty acids (PUFAs) have the 

potential to produce butyrate and enhance 

Lachnospiraceae taxa (Noriega et al., 2016). Prolonged 

high saturated fat intake causes high production of 

bacterial amyloids which is associated with misfoldings 

of proteins and enhanced neuroinflammation. High-fat 

diet intake leads to an abundance of Enterococcaceae, 

Roseburia, Staphylococcus, Dorea, and Coprobacillus 

with reduced cognition abilities and slow brain 

metabolism (Sanguinetti et al., 2018). 

 

Gluten-free, casein-free, and food additives-rich 

diet 
 

Foods rich in salicylates and artificial additives 

contribute to ADHD development. Gluten-free and 

casein-free diets (GFCF) are found to be effective for 

autism spectrum disorder (ASD) treatment 

(Paniwowarczyk et al., 2018). GFCF diets do not 

produce opioid peptides BCM7 (β-caso morphin7) when 

subjected to partial digestion of gluten and casein 

peptides which otherwise correlates with negative effects 

on mental health. These food-derived opioid peptides 

tend to cross the blood-brain barrier to reach and bind 

with their respective receptors in the brain and act as 

neuromodulators to affect neurotransmission and unfold 

the pathogenesis of ASD (Jarmołowska et al., 2019). 

Gluten tolerance can be assumed by a gluten-free diet 

when taken with prebiotics and probiotics with 

concomitant increase in Clostridiaceae, Victivallaceae 

and Coriobacteriaceae families and reduced Roseburia 

feces and Ruminicoccus bromii causing a possibility to 

cure celiac disease (Bonder, 2016). Certain food 

additives such as aspartame, saccharin, and sucralose 

increase Bacteroides spp and decrease Bifidobacterium 

and Clostridium spp leading to glucose intolerance (Suez 

et al., 2014). 

 

Ketogenic Diet 
 

Ketogenic diet has been found to have a high therapeutic 

potential for pediatric epilepsy and many other mental 

disorders (Castro et al., 2015). The Keto diet (KD) leads 

to reduced levels of tumor necrosis factor (TNF-α) in 

plasma and Interleukin-1β (IL-1β) in the brain with 

favorable effects in Schizophrenia (SZ) patients (Dupuis 

et al., 2015). KD intake is known to trigger loss of 

microbial diversity with decreased Bifidobacteria and 

increased E.coli, Shigella, Akkermansia muciniphila,and 

Parabacteroides merdae resulting in protection against 

epileptic seizures (Olson et al., 2018). Oral intake of L-

carnitine and phosphatidylcholine is reported to elevate 

levels of trimethylamine (TMA) and its proatherogenic 

metabolite trimethyl amine-N-oxide (TMAO) with 

increased risk of atherosclerosis and associated 

cardiovascular diseases (CVDs) (Koeth et al., 2013). 

TMAO contributes to atherosclerotic plaques, increased 

coronary plaques, plaque-rupture possibilities, and 
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enhanced risk of the coronary syndrome and myocardial 

infarction (Zhu et al., 2016; Tang et al., 2013; Tang et 

al., 2015) (Fig. 5). 

 

The onset of depression induced by an inflammatory 

cytokine interferon-α (IFN-α) can be avoided by 

pretreating with eicosapentaenoic acid (EPA) (Su et al., 

2014). Intake of the ketogenic diet leads to an increase in 

Desulfovibrio spp. and E. coli with a corresponding rise 

in gut inflammations and a decrease in Bifidobacterium 

and Dialister (Lindefeldt et al., 2019).  

 

Early introduction of the ketogenic diet modulates the gut 

microbiome to enhance brain vascular functions and 

improve cognition and memory via the production of 

SCFAs which reduces leakiness of the gut and limits the 

diffusion of lipopolysaccharides (LPS), thereby reducing 

the risks for Alzheimer’s disease (AD) and improving the 

overall health of the brain.  

 

Release of gamma amino butyric acid (GABA) for the 

overall health of the brain is attributed to increased levels 

of Akermansia muciniphila, Bacteroides fragilis, 

Dialister invisus, and Bifidobacterium adolescentis upon 

intake of Mediterranian keto diet. Western diet on the 

other hand leads to an abundance of Helicobacter pylori, 

Prevotella, Campylobacter, and Porphyromonas with 

subsequent release of LPS, the later enters the 

bloodstream to activate TLR-4 dependent CD14 and 

causes damage to the intestinal barrier to enhance 

permeability of gut and release of pro-inflammatory 

cytokines (Kim et al., 2021; Qin et al., 2007). With the 

keto diet, the neurotransmitter epinephrine, GABA 

release is enhanced with decreased production of reactive 

oxygen species (ROS), biogenesis of mitochondria, 

hyperpolarization of neurons, and energy metabolism 

gene upregulation (Bough and Rho, 2007). 

 

These begin a cascade of synaptic disruption and neuro-

inflammation that is the root cause of neurodegenerative 

diseases. 

 

High and Low-Calorie Diets 
 

A very low-calorie diet fed to obese patients for 6 weeks 

is known to alter gut microbiota (Simões et al., 2014). 

Obesity and non-alcoholic fatty liver disease (NAFLD) 

can be prevented by making alterations in gut microbe 

composition based on diet (Henao-Mejia et al., 2012). 

Reduction in dysbiosis occurs with dietary intervention 

to alter the composition of microbiota to a favorable and 

stable state such as a decrease of Acinetobacter spp and 

increase of Corynebacterium. Decreased Actinobacter is 

correlated with enhanced cytokine response in patients 

with chronic mucocutaneous candidiasis (CMC) and 

hyper immunoglobulin E syndrome (HIES) with fungal 

pathogens Candida albicans and Staphylococcus aureus 

for fighting against these two immunodeficiencies 

(Smeekens et al., 2014). 

 

The prevalence of Akkermansia in the gut largely 

determines the basal metabolic rate in humans (Xu et al., 

2022). For ulcerative colitis (UC) remission, an anti-

inflammatory diet is highly recommended (Kedia et al., 

2022). High sugar intake induces colon inflammations by 

increasing the levels of Akkermansia muciniphala, 

enhancing gut permeability, and reducing the production 

of SCFAs. This is mediated by the production of an 

enzyme that degrades the mucus layer (Khan et al., 2020; 

Laffin et al., 2019). Probiotic intervention declines 

recovery of endotoxin from the gut of obese, diabetic, 

and hypertensive subjects from 35% to non-detectable 

traces with resolved issues of hypertension, 

hyperinsulinemia, and hyperglycemia (Fei and Zhao, 

2013). 

 

Animal and Plant-Based Proteins 
 

Dietary intake of animal protein-based and dairy 

products leads to an abundance of Bacteroides, Bilophila, 

and Alistipes which further increase TMAO, 

nitrosamines, and ammonia. TMAO with pro-atherogenic 

potential leads to an increased risk of CVDs (David et 

al., 2014; Barrea et al., 2019; Zhang et al., 2022).  

 

The animal protein-based diet also exacerbates the 

growth of Desulfovibrio spp that produces H2S and 

increases gut inflammation. On the contrary, plant-based 

proteins increase the abundance of beneficial bacteria 

such as Eubacterium faecalibacterium, Clostridium, 

Roseburia, Bifidobacterium, and Lactobacillus while 

decreasing Bacteroides and Clostridium (Swiątecka et 

al., 2011; Graf et al., 2019). 

 

Polyols and Polysorbate-rich diet 
 

Polyols induce laxative effects and also an increased 

Bifidobacterium in humans. Polysorbate 80 and 

carboxymethyl cellulose can promote gut inflammation 

with an increase of Akkermansia muciniphila and 

proteobacteria (Ruiz-Ojeda et al., 2019; Chassaing et al., 

2015; Chassaing et al., 2017). 
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Vegetarian and Vegan diets 
 

Vegetarian and vegan diets lead to an abundance of 

Bacteroides, Clostridium, Faecalibacterium, and 

Klebsiella and lower levels of Bilophila (Matijaˇsi´c et 

al., 2014; Ruengsomwong et al., 2016). 

 

Dietary interventions have a significant impact on gut 

microbiota but short-term and long-term interventions 

need a detailed study to see if the short-term intake has a 

long-standing impact on gut microbiome diversity. Beta 

diversity can be dealt with short-term interventions but it 

is hard to deal with alpha diversity. Detailed studies are 

required to investigate the changes in microbial 

composition in response to habitual dietary strategies.  

 

If the host acquires microbial resilience, the diversity 

returns to its original state after interventions otherwise it 

tends to establish a new microbiome profile (Smits et al., 

2017). Therefore, diet and gut microbiota act 

synergistically to provide resilience against diseases. 

 

Effects of fasting or starvation on human gut 

microbiota 
 

Fasting in humans leads to an abundance of 

Christensenellaceae species. A decreased abundance of 

firmicutes such as Lachnospiraceae and 

Ruminococcaceae and an increase of E. coli and 

Bilophila wadsworthia with a calorie-restricted diet is 

reported (Mesnage et al., 2019). While Ramadan fasting 

led to elevated levels of Faecalibacterium prausnitzii, 

Roseburia, Eubacterium, Akkermansia, Butyricicoccus 

pullicaecorum (Ozkul et al., 2020) and Bacteroides 

fragilis (Ozkul et al., 2019).  

 
Within one week of calorie-restricted diet intake, an 

initial increase in abundance of Lactobacilli and 

Enterobacteria is seen with a subsequent decline by the 

end of the intervention. Genera Clostridium-XIV, 

Coprococcus, and Lachnospiracea decrease due to 

fasting while Faecalibacterium is known to increase 

(Ozkul et al., 2020). The abundance of Lachnospiraceae, 

Blautia and Faecalibacterium is observed after 

intermittent fasting.These bacterial genera produce 

butyrate in the gut and counterbalance dysbiosis in the 

gut of patients suffering from multiple sclerosis (MS). 

Therefore, dietary programs and fasting regimens can 

serve as important non-pharmacological interventions for 

the treatment of various diseases. 

Nutritional Supplements  

 
Protective effects of specific nutrients like zinc, iron, 

iodide, and omega-3-PUFA and adverse effects of food 

coloring agents, sugar, and preservatives are found to be 

associated with increased risk of ADHD and obesity 

(Pelsser et al., 2020; Bowling et al., 2017). A deficiency 

of vitamins such as A, C, B6, B12, D, and folate has been 

found to trigger an onset of ASD (Fraguas et al., 2019). 

Deficit of nervonic acid (NA), a monounsaturated 

omega-9-fatty acid is known to develop psychosis in 

patients with high clinical risk (Amminger et al., 2012), 

while omega-3-fatty acid supplementation tends to 

reduce psychotic conversion rates (Moon, 2010; 

Cadenhead et al., 2017). Elevated Hcy serum levels 

(homocysteine) are related to the development of 

cardiovascular diseases, SZ, and Alzheimer’s disease 

(Tinelli et al., 2019). A low level of serum Vitamin D is 

observed in SZ patients while Vitamin D is found to have 

a negative correlation with psychosis severity (Gracious 

et al., 2012). Low dietary intake of vitamin C is 

associated with an increased risk of SZ. So, clinical 

management of SZ, in patients is diet dependent and also 

associated with celiac disease (Cha and Yang, 2020). 

Alterations in the diet by introducing protein 

supplementation can havea significant imbalance in gut 

microbiota. In studies conducted, a diet complemented 

with protein intake was found to be correlated with an 

increase in the population of Bacteriodetes and a 

decrease in health-related taxa including Bifidobacterium 

longum, Blautia and Roseburia. Also, Lactobacilli and 

other butyrate-producing bacteria are reduced in 

abundance (Ma et al., 2017) along with a decrease in 

SCFAs-producing phylum such as Coprococcus. Protein 

supplements with probiotics could form a part of future 

strategies to mitigate the imbalance of microbiota in 

place of only protein supplementation and can result 

inrecovering the dysbiosis. However, further research is 

required to determine sources and doses of protein in 

support of health benefits for the sports community. 

Therefore, long-term protein supplementation with 

proteins hurts gut microbiota. Protein overfeeding also 

leads to lower levels of malondialdehyde which is a 

marker for oxidative stress and it can lead to changes in 

populations of microbiota and their metabolites (Moraes 

et al., 2017). Vitamin A supplementation increases 

Bacteroidetes and decreases in Actinobacteria, 

Bifidobacterium, Clostridium, Enterobacter, Escherichia, 

and Proteobacteria populations. β -carotene intake 

results in decreased Bacteroides, and an increased 
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Firmicutes and Clostridium (Liu et al., 2017; Li et al., 

2017). Increased Proteobacteria and Actinobacteria 

result due to retinol intake (Mandal et al., 2016). The 

duration of E.coli infections after supplementation with 

vitamin A is due to a decrease in IL-8 and monocyte 

chemoattractant protein-1 concentrations (Long et al., 

2011). 

 
Vitamin B2 provides an anti-oxidative environment in the 

gut which favors the growth of Faecalibacterium 

prausnitzii and reduces E. coli colonization, thereby 

decreasing pro-inflammatory processes and hence 

finding applications in IBD treatment. B2 

supplementation is associated with reduced inflammatory 

effects due to low oxidative stress, C-reactive proteins, 

low IL-2, and decreased erythrocyte sedimentation rate 

(ESR) (von Martels et al., 2019). An increased intake of 

Vitamin B2, B5, B6, and B12 leads to a corresponding 

increase inthe abundance of Prevotella and a decrease in 

Bacteroides populations (Carrothers et al., 2015). Also, 

deficiency of cobalamine (Vit B12), vitamin B9 (folic 

acid), and piroxidine (Vit B6) is found to be associated 

with schizophrenia (SZ) development. In other words, 

vitamin B supplementation results in increased microbial 

interactions, metabolism, and signaling besides ensuring 

enhanced microbial diversity, specifically beneficial 

microbes that are enriched by Vitamin A, D, and E. 

 
Vitamin C, E, and B2 reduce redox potential. Vitamin C 

ensures increased SCFA production and exhibits 

antibacterial, antiviral, and antimicrobial properties 

(Mousavi et al., 2019). Vitamins A and D lead to 

increased immune function and also enhance barrier 

functions. Diseases of the gastrointestinal tract such as 

inflammatory bowel disease are correlated with a 

deficiency of vitamin D (Cross et al., 2005) which alters 

microbiome diversity with an increased 

Coriobacteriaceae, Streptococcus, Bifidobacterium, 

Dorea and Coprococcus while decreased Odoribacter 

and Desulfovibrionaceae (Pham et al., 2021; Chatterjee 

et al., 2020).  
 

Vitamin D supplementation also reduces the abundance 

of gamma proteobacteria like Pseudomonas, E.coli, and 

Shigella. Haemophilus, Blautia, and Veillonella while 

increased Prevotella and Lachnospira. Higher intake of 

vitamin E results in decreased Proteobacteria. Vitamin E 

and iron supplementation lead to the enrichment of 

butyrate-producing bacteria (Tang et al., 2016) and 

decreased vitamin E can enhance pathogenic Citrobacter 

in mice models (Smith et al., 2011). Vitamin K supports 

bacterial diversity in the gut microbiome (Fenn et al., 

2017). 

 

Antibiotics 
 

Antibiotics play a significant role in eradicating some 

diseases. Abundance of overgrown colitis bacteria in 

patients can be reduced with certain antibiotics. 

Similarly, antibiotics such as Minocycline and 

Sulfazalazine reduce symptoms of rheumatoid arthritis 

patients which target the causative microbes that are 

bacteria (Stone et al., 2003). Administration of 

antibiotics during pregnancy, infancy, childhood, or even 

during adolescence influences colonization and diversity 

of gut microbiome to determine various neurocognitive 

disorders later in life (Younge et al., 2019; Burger et al., 

2020) 

 

At the same time, the use of broad-spectrum antibiotics 

results in short-term and long–term perturbation of 

diversity in the resident microbiome community of the 

host that has detrimental impacts leading to the killing 

and reduction of beneficial microbes such as 

Faecalibacterium prausnitziito cause deleterious effects 

on host health too. For instance, low levels of F. 

prausnitzii are found to be prevalent in IBD patients 

(Sokol et al., 2009; Dubourg et al., 2014).Antibiotic-

associated diarrhea (AAD) can be another outcome of the 

elimination of beneficial gut microbiota, in the absence 

of which Clostridium difficile gets a chance to thrive well 

and can further lead to diarrhea and colitis (Buffie et al., 

2012; Mc Donald 2017). 

 

Decreases in accompanied serotonin levels, secondary 

bile acids, and tryptophan hydrolase influence gut 

motility (Ge et al., 2017). Also, there is a decrease in 

SCFA production with corresponding low levels of 

butyrate and propionate. (Mu et al., 2017) The absence of 

useful microbes under antibiotic influence results in 

immunological and physiological changes to the gut 

environment. Mucus thickness and gastric motility are 

reduced with improper functioning of intestinal cells and 

immune cells (Cehenzli et al., 2013) and chances of 

invasion by pathogens and subsequent inflammations 

become high (Wlodarska et al., 2011). Barrier functions 

of intestinal cells are also impaired which can lead to the 

development of ulcerative colitis, Salmonella, and 

Helicobacter infections (Machills et al., 2013; Gillis et 

al., 2018).  

 

Altered microbial composition due to antibiotics results 
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in deficiencies of certain vitamins and metabolites that 

are produced by beneficial bacteria. Antibiotic 

intervention alters the gut microbiota and is known to 

reduce the severity of multiple sclerosis (MS) in human 

murine models. This is attributed to reduced secretion of 

pro-inflammatory cytokines such as IL-17.  

 

Antibiotics therefore create persistent off-target 

microbiome disturbance called dysbiosis that can further 

lead to disorders and diseases related to host immunity 

and result in increased abundance of antibiotic-specific 

resistance genes. Antibiotics result in reduced 

colonization resistance with a concomitant increase in 

susceptibility to specific opportunistic pathogens such as 

Azithromycin-resistant Clostridium difficile, Salmonella, 

and Vancomycin-resistant Enterococci (Brandl et al., 

2008; Sequeira et al., 2020; Wu et al., 2020). 
 

More research is needed to understand how different 

antibiotics alter gut microbiomes to better regulate the 

indiscriminate usage of antibiotics and avoid risks of 

antimicrobial-resistant infections. Consistent use of 

antibiotics during childhood results in the development 

and abundance of bacterial antimicrobial resistant (AMR) 

genes called resistome which posesa risk of obesity, 

diabetes, asthma, allergy, and later adiposity in life 

(Block et al.,2018; Marra et al., 2009; Chen et al., 2021; 

Stokholm et al., 2014). Class of antibiotics, duration of 

administration, usage, and follow-up time impact the 

diversity and composition of the microbiota. The use of 

other therapies such as probiotics, synbiotics, and FMT 

(Fecal Microbiota Transplantation) must be emphasized 

post-antibiotic treatment to restore the gut microbiota 

community. 
 

Several therapies such as bacteriophage therapy, 

bacteriocins use, FMT, probiotics, synbiotics, and use of 

monoclonal antibodies are important alternatives to the 

use of antibiotics that pose target-specific results with 

minimal damage to the microbiota thus emphasizing the 

need to develop therapies in addition to methods of 

conserving and restoring the perturbed microbial- 

communities post-antibiotic treatments. 
 

Probiotics 
 

The live microorganisms which when consumed in 

adequate amounts bring about health benefits to the host 

or active bodies with essential functions for promoting 

health aspects (Gasbarrini et al., 2016). 

 

Lower levels of Bifidobacteria and Blautia gut bacteria 

in mice are linked with the production of less tryptophan 

which acts as the serotonin precursor (Golubeva et al., 

2017). Bacteroides fragilis or Lactobacillus reuteri, 

when administered, bring about gastrointestinal and 

behavioral changes in ASD (Pama, 2019). ASD-suffering 

children report GI pain and increased levels of 

Clostridiales, decreased levels of Veillonellaceae, 

Coprococcus, and Prevotella (Luna et al., 2017), 

butyrate-producing taxa Ruminococcaceae, Eubacterium, 

Lachnospiraceae, and Erysipelotrichaceae together with 

low production of SCFAs in adults (Liu et al., 2019). 

Selected strains of Bifidobacterium longum infantis and 

B. bifidum can abolish food-derived opioid peptides to 

contribute to host health (Olivares et al., 2018). Different 

probioticstrains such as Lactobacillus rhamnosus, L. 

reuteri, and Bifidobacterium infantis, when administered 

in combination, reduce incidences of seizures and 

epileptic activity due to increased GABA levels in the 

brain and accompanied by reduced oxidative stress in the 

brain (Bagheri et al., 2019). A reduction in Bacteroides, 

Prevotella, Bacteroides fragilis, Bifidobacterium and 

Eubacterium, Clostridium, and Coccoides groups is seen 

in rheumatoid arthritis patients (Scher et al., 2013). 

When inoculated in a probiotic combination, thisprovides 

chances for rheumatoid arthritis management. Also, 

members of families Lactobacillaceae of Firmicutes, 

Rikenelleceae, and Porphyromonadaceae suggest an 

immune-regulative role in diabetes. 

 

Probiotics strains including Bacillus spp (Bacillus breve, 

B. bifidum, B. subtilis, B. longum, B infantis), 

Lactobacillus casei, L. acidophilus, L. delbrueckii, L. 

helveticus, L. plantarum, L. salivarius, L. rhamnosus, 

Lactococcus lactis lactis, and Streptococcus thermophiles 

when administered in MS patients, reduce IL-6 and 

BDNF levels (Rahimlou et al., 2020) with a decreased 

release of IFN-γ, IL-1β and increased expression of anti-

inflammatory IL-4, IL-5, and IL-8 (Dargahi et al., 2020). 

Gastrointestinal bacteria activate stress circuits via vagus 

pathways (Lyte et al., 2006). 

 

A probiotic mixture of Bacillus mesentericus, 

Clostridium butyricum, and Streptococcus faecalis is 

known to reduce the symptoms of Schizophrenia (SZ) 

(Nagamine et al., 2012). While a mixture of ten strains of 

Lactobacillus and four strains of Saccharomyces up-

regulates G-protein-coupled receptor 43/41 (GPR 43/41) 

and triggers GLP-1 secretion with subsequent release of 

insulin (Wei et al., 2015) and holding the potential for 

management of diabetes. Certain probiotics show 

beneficial effects in relieving stress-related behaviors and 
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anxiety thus modulating depressive states in rats. Parallel 

studies are required in humans too (Dinan et al., 2013). 

Administration of Lactobacillus plantarum is correlated 

with a reduction in infarct size and improved functioning 

of the left ventricle after myocardial infarction. L 

rhamnosus is known to reduce left ventricle hypertrophy. 

A high abundance of Odoribacter is associated with low 

blood pressure in obese people due to more production of 

butyrate and other SCFAs (Gomez-Arango et al., 2016). 

Therefore probiotics used in adjunctive medications give 

more reliable and effective outcomes in various 

cardiovascular disorders (Lam et al., 2012; Gan et al., 

2014). 

 

The use of probiotics and synbiotics can prove as a good 

option to restore the microbiota community post-

antibiotic treatment. Probiotics produce antimicrobial 

peptides and bacteriocins and together these suppress the 

growth of non-commensals, enhance the barrier function 

of the gut, and modulate immunity (Cazorla et al., 2018). 

FMT supplementation followed with three strains of 

Lactobacillus can restore IL-22 production and reduce 

inflammations which opens avenues of probiotics as 

therapeutic agents. However, FMT is considered more 

beneficial as probiotics use cannot regain the entire 

microbial balance in the gut (Suez et al., 2018). 

 

Prebiotics 
 

Resistant to gastric acidity and digestive enzymes of the 

host, non-absorbable, fermentable by gut bacteria, and 

having the potential to activate gut microbiota 

selectively, these probiotics are exploited towards the 

human interests of maintaining good health. Galacto-

oligosaccharides (GOS) and resistant starches (RS) can 

stimulate Bifidobacteria, Lactobacilli largely and 

Bacteroidetes, Enterobacteria,and Fermicutes to some 

extent (Louis et. al. 2016, Ze, et al., 2012).  

 

These bacteria degrade prebiotics to produce SCFA 

which are small enough to diffuse from enterocytes and 

impact extra-intestinal organs such as the central nervous 

system (CNS), cardiovascular system, immune system, 

etc. Prebiotic supplementation resultsin an elevated 

Bifidobacteria population to improve Crohn’s disease, 

IBS, IBD, and even UC (Lindsay et al., 2006). Dysbiosis 

of microbiota in Crohn’s disease is well elucidated with 

low levels of immunoregulatory Faecalibacterium 

prausnitzii (Sokol et al., 2009). Prebiotics show anti-

adherence properties and prevent the binding of bacterial 

pathogens to attachment sites by disrupting adhesion-

oligosaccharides, thus reducing the chances of 

gastrointestinal infections (Sharon, 2006). Similarly, 

pectic oligosaccharides, chitin oligosaccharides, and 

mannose oligosaccharides also act as adherence agents. 

 

Synbiotic therapy comprising of Bifidobacterium lactis, 

Lactobacillus, Rhamnosus, and inulin reduce the chances 

and rate of colorectal cancer by improving the intestinal 

barrier strength (Candela et al., 2011; Pool-Zobel, 2005). 

The population of harmful pathogens can be kept under 

check by prebiotics through direct binding or cytokine 

production. Prebiotic metabolites tend to improve the 

fetal immune system by crossing through the placenta. 

Prebiotic intake also reduces the use of antibiotics and 

reduces the duration of the disease. Β(2⟶1) fructans 

lead to an abundance of interleukin-4 (IL-4) in serum, 

toll-like receptor-2 (TLR-2) mediated immune response, 

CD282+/ TLR2+ myeloid dendritic cells (Clarke et al., 

2016). Blood levels of IL-8, IL-1β, IL-10, and C-reactive 

protein (CRP) become high due to GOS 

(galactooligosaccharides) intake and also better working 

of NK cells consuming GOS (Vulevic et al., 2008; 

Vulevic et al., 2015). This leads to reduced expression of 

IL-6 and phagocytosis in monocytes and granulocytes 

(Guigoz et al., 2002). FOS (Fructooligosaccharides) and 

GOS show regulatory effects on neurotransmitters N-

methyl-D-aspartate (NMDA) and synaptic disorders by 

altered gut microbiota diversity (Smith et al., 2015; 

Waworuntu et al., 2014). Higher gastrointestinal 

disorders are correlated with autism (Adams et al., 2011). 

FOS supplementation is known to restore 

Bifidobacterium, Bacteroides, Clostridium, Roseburia, 

and Phascolartobacterium faecium with a positive 

impact on anorexia nervosa (Liu et al., 2021). 

 

Lactulose has preventive potential for hepatic 

encephalopathy (Mudd et al., 2016; Müller et al., 1966) 

by lowering the pH of the lumen and reducing the 

production of ammonia due to inhibited glutaminase 

activity. The side effects of lactulose like nausea and 

flatulence are overcome by another prebiotic lactitol 

which is better than lactulose and equally effective for 

curing hepatic encephalopathy (Blanc et al., 1992). 

Prebiotics play a significant role in improving allergic 

skin problems like atopic dermatitis (Grüber et al., 2010), 

lowering the risk of CVD, reducing the level of total 

cholesterol, low-density lipoprotein (LDL) (Tiwari et al., 

2011) and inflammatory elements. Non-alcoholic fatty 

liver disease (NAFLD) can be managed with prebiotics 

more efficiently along with medication (Tarantino and 

Finelli, 2015) and also enhances calcium absorption and 
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acts as a promising agent to improve the overall health of 

humans. A link has been found to exist between gut 

microbiota and NAFLD (Abu-Shanab and Quigley, 

2010), non-alcoholic steatohepatitis (NASH), and obesity 

(Chierico et al., 2017). Risk of sepsis, bacteremia, and 

severe malnutrition endocarditis in immune-

compromised patients are attributed to prebiotics due to 

an incompetent intestinal epithelial barrier (Tsai et al., 

2019). Intake of low dietary prebiotics reduces 

saccharolytic bacteria specifically Bifidobacteria. SCFAs 

produced from the action of colonic bacteria on prebiotic 

fibers modulate cytokine production and expansion of T-

cells to favor the homeostasis of colonocytes and 

decrease the possibilities of inflammations (Lee and 

Hase, 2014). 

 

In diabetes T2DM, butyrate-producing bacteria are 

scarce while Clostridiales sp., Eubacterium rectale, 

Faecalibacterium prausnitzii, Roseburia inulinivorans 

and Roseburia intestinalis are enriched. Pathogens like 

Bacteroides caecae, Akkermansia muciniphila, 

Desulfovibrio, E.coli, and Clostridium are also enriched 

(Qin et al., 2012). 

 

For the reduction of resident gut microbiota-based 

disorders and keeping in mind the needs of each society 

and specific population, designing specific prebiotics is a 

challenging task and a topic of future research. 

 

Synbiotics 
 

Probiotics and prebiotics when consumed as a mixture 

constitute synbiotics. This is based upon formulating 

probiotics such as Bifidobacterium and Lactobacillus 

clubbed with prebiotics such as inulin, cellobiose, 

psyllium, GOS, lactitol, FOS, and β-glucan for different 

time durations. Synbiotics have the potential to modulate 

microbiota and benefit diseases such as IBS, obesity, 

diabetes, infections, and chronic kidney disease with 

significant enrichment of Bifidobacterium (McFarlane et 

al., 2019). A combination of B. longum and inulin and 

another combination of Lactobacillus and GOS enhances 

the Bifidobacterium to different extents. Synbiotics 

comprising Lactobacillus plantarum, lactulose, and 

arabinose effectively adjust the blood glucose, lipid 

profile, and body weight of T2DM patients to ideal 

levels. Lactulose produces low molecular weight organic 

acids to reduce the pH of the intestine (Aït-Aissa and 

Aïder, 2014), and L-arabinose checks sucrose breakdown 

to reduce weight and manage diabetes (Panesar and 

Kumari, 2011). The presence of L. plantarum is 

favorable for the thriving of Bifidobacterium which in 

turn reduces plasma endotoxins and ammonia in the 

blood. Therefore, synbiotics on the whole serve to play a 

role in detoxification, hypolipidemia, and hypoglycemia 

in T2DM patients as compared to a single probiotic or 

prebiotic. Synbiotics, therefore maintain homeostasis of 

intestinal flora and provide a new solution for managing 

T2DM. Lactobacillus rhamnosus, in a combined 

interventional approach for immunotherapy, provides 

promising results for the prevention of food allergies as 

compared to probiotics alone, thereby corroborating 

synbiotics as a more integrated, refined, and successful 

approach for the management of diseases through gut-

microbiome modulation. The release of bacterial toxins 

and production of pro-inflammatory cytokines also 

contribute to dysbiosis that needs to be addressed to with 

synbiotics intervention. Total Bifidobacterium spp., 

Actinobacteria, Actinobacteriota, Lactobacillus, 

Parabacteroides, Ruminococcaceae, Firmicutes, 

Methanobrevibacter, Prevotella enrich upon synbiotics 

supplementation whereas Enterobacteriaceae, 

Bacteriodetes, Proteobacteria, Desulfovibrio, 

Oscillospira, Verrucomicrobiota, Bacteroidota, 

Akkermansia muciniphila, Roseburia and Zonulindecline 

in population (Ouwehand et al., 2009; Costabile et al., 

2017; Kanazawa, 2021; Krumbeck et al., 2018). 

 

The effect of synbiotics on gut microbiome results in 

enhanced SCFA-producing microbes and corresponding 

improvised gut health. Increased production of butyrate 

and propionate with pronounced anti-inflammatory 

effects and a more preserved intestinal barrier with more 

expression of inflammatory cytokines have a direct 

impact on immune and neuronal modulation (Gill et al., 

2018). Microbes such as Alloprevotella, 

Ruminococcaceae, Prevotellaceae, and Catenibacterium 

are more abundant with the intake of a synbiotic fiber-

rich diet (Neyrinck et al., 2021) and mediate their action 

by improving the intestinal barrier (Chen et al., 2019), 

reducing inflammations, increasing more SCFAs 

producing bacteria such as Eubacterium ruminantrim, 

modulating action of enzymes to manage obesity and 

showing the synergistic effect on T2DM. On the 

contrary, the intake of synbiotics results in decreased 

abundance of pathogenic Erysipelato, and Clostridium 

and with corresponding low chances of diet-induced 

obesity (Jo et al., 2021; Mukherjee et al., 2024; Oh et al., 

2021). Synbiotics lead to an abundance of Alistipes and 

Parasutterella to maintain bile acid levels and regulate 

the metabolism of cholesterol (Mukherjee et al., 2020) 

with the later while Alistipes offers protection against 
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colitis, fibrosis, cancer, and CVD (Parker et al., 2020). 

Decreased Ruminococcus gnavus is detected due to 

synbiotics intake with the corresponding effect of the 

same against Crohn’s disease. Dialister and Prevotella 

increase upon intake of Bifidobacterium bifidum, B. 

longum, Lactobacillus acidophilus, and L. rhamnosus as 

synbiotics. Prevotellaceae UCG-003 acts as a modulator 

of inflammations in the intestine. Streptococcus 

salivarius increases due to synbiotic intake with 

corresponding reduced inflammations (Kaci et al., 2014) 

while Colidextribacter levels are lowered with 

corresponding reduced inflammatory metabolites (Gu et 

al., 2022). 

 

The potential of Ruminococcus albus and R. flavefacines 

lies in producing butyrate to provide energy to the 

intestinal cells while acting as anti-cancerous entities 

(Sergeev et al., 2020). 

 

Further research is required to work out the best possible 

combinations of probiotics and prebiotics, their 

proportions, dosage, duration, and mode of delivery for 

the most effective regimens to meet the need for 

microbiota-modulating therapies.  

 

Postbiotics 
 

Various inanimate microorganisms or bioactive 

compounds including inactivated cell preparations or 

microbial cells metabolites, non-toxic and non-viable 

compounds, or food constituents derived from 

microorganisms that offer health benefits come under the 

category of postbiotics. These include SCFA, 

bacteriocins, EPS (exopolysaccharides), vitamins, 

enzymes, and peptides in inactivated cell preparations 

and mediate their health effects by strengthening the gut 

barrier, reducing gut inflammations, and promoting 

antimicrobial actions against gut pathogens. SCFAs 

activate their receptors on intestinal epithelial cells to 

mediate signals for the maintenance of the epithelial 

barrier and also for the regulation of the immune system 

(Sun et al., 2016). All the five SCFAs viz. acetic acid, 

propionic acid, butyric acid, pentanoic acid, and hexanoic 

acid increase after intake of postbiotics along with the 

increase of other metabolites such as p-methoxy 

cinnamic acid and α-linolenic acid while piperine, 

capsaicin, theophylline, phenylalanine, tryptophan, 5-

hydroxy tryptophan, aromatic amino acids, kynurenine 

and other related metabolites decrease. A primary bile 

acid Chenodeoxycholic acid also decreases which is 

linked with diarrhea (Yu et al., 2018; Panpetch et al., 

2021; Hill et al., 1991; Chaiyasit and Wiwanitkit, 2016; 

Zheng et al., 2020). 
 

Intestinal motility is regulated by propionic acid, valeric 

acid, citric acid, malic acid, lactic acid, and butyric acid 

through different mechanisms such as affecting colonic 

smooth muscles functioning, vagus nerve and stimulating 

mucosal receptors (Rondeau et al., 2003) by altering 

intestinal pH and eliminating harmful bacterial 

metabolites (Sun et al., 2017; Bosi et al., 2007). 

Production of anti-inflammatory interleukin IL-10 is 

enhanced by 3-indole acrylic acid to suppress cytokine 

IL-6 and IL-1β, posing a good anti-inflammatory effect. 

5 HT (5 hydroxy tryptamine) mediates its effect by 

enhancing the gut mucosal barrier to elicit anti-diarrheal 

properties (Iancu et al., 2023). Heat-treated Lactobacillus 

(LB) has the potential to mitigate diarrhea which is 

accompanied by post-antibiotic treatments. 
 

Anxiety and sleep disturbance associated with diarrhea 

are taken care of by postbiotic interventions effectively 

(Nishida et al., 2019). Quality of life in IBS patients is 

improved by Lactobacillus (LB) by relieving bloating, 

and abdominal pain, reducing weekly stools and 

frequency of diarrhea (Nocerino et al., 2017). 

 

Butyrate is anti-inflammatory and anti-carcinogenic 

(Barcenilla et al., 2000). UC, Crohn’s disease, and 

colorectal cancer patients become devoid of butyrate-

producing bacteria. Propionate also has anti-carcinogenic 

effects and has the potential to check hypertensive 

cardiovascular damage. While acetate shows anti-

inflammatory effects. Therefore, butyrate and 

propionate-rich postbiotic preparations produced from 

bacterialcultures are administered to handle diseased 

conditions. Butyrate-producing bacteria being food-

unsafe are replaced by food-safe lactate-producing 

bacteria which produce lactate and subsequently later can 

be converted into butyrate or propionate via different 

pathways (Flint et al., 2014; Gänzle, 2015; Louis et al., 

2022) to rule the option of foodborne infections from 

Salmonella typhimurium (Barbara, 2006).  
 

Similarly, EPS from Lactiplantibacillus plantarum 

improves the strength of the intestinal barrier by 

enhancing the tight junction proteins expression and 

preventing pro-inflammatory cytokine expression (Zhou 

et al., 2018; Neurath, 2014; Chen and Sundrud, 2016; 

Luettig et al., 2015).  
 

EPS from other bacteria such as lactic acid bacteria has 

anti-proliferative and anti-oxidative potential and can be 
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delivered to the gut from postbiotic preparations (Kodali 

and Sen, 2008; Sharma et al., 2014). Antimicrobial 

peptides called bacteriocins inhibit specific microbes 

without affecting the beneficial ones dwelling in the gut 

(Gálvez et al., 2007). 
 

Postbiotics facilitate the flourishing of cellulose-

producing bacteria and reduce the population of 

methanogens. The proliferation of beneficial genera such 

as Bifidobacterium, and Lactobacillus is promoted while 

that of pathogenic ones like E.coli and Enterococci is 

inhibited with postbiotics intake (Liu et al., 2021). 

Increased beneficial gut bacteria include 

Faecalibacterium, Prausnitzii, Microviridae, 

Fournierella, Lawsonibacter, Ruminococcu, 

Bifidobacterium aerophilum, Dialister hominis, 

Angelakisella, Dysosmobacter, Pseudoruminococcus 

while decreased population include Amedibacterium 

intestinale, Succinivibrio, Fusobacterium, 

Duodenibacillus, Alistipes, Megamonas funiformis, 

Bifidobacterium adolescentis, Blautia, Holdemania 

filiformis, Metalysinibacillus, Ruminococcus,and 

pathogens like Megamonas after postbiotic intervention 

(Scott et al., 2022; Thu et al., 2011; Izuddin et al., 2019). 

Cell wall components and cytoplasmic extracts obtained 

from these beneficial bacteria act as the most common 

probiotic producers for effective postbiotics which in 

turn can manage several health conditions by acting as 

anti-inflammatory, anti-oxidative, antiproliferative, 

immunomodulatory, anti-obesogenic and antibacterial 

therapeutic agents with plasma sugar reducing, 

cholesterol reducing potential (Sokol et al., 2008; Jensen 

et al., 2010; Jensen et al., 2007). 
 

Lactococcus stimulates immune cells to produce 

cytokines for better overall. Pediococcus acidilactici and 

P. pentosaceus produce bacteriocins and other 

antimicrobial metabolites showing anti-adipogenic 

effects). Similarly, β-glucan obtained from 

Saccharomyces cerevisiae cell wall has the effective role 

of scavenging hydroxyl radicals and serves as an 

antioxidant (Pourahmad et al., 2011), and acts as 

postbiotic to regulate the immune system via TLR-2-

MyD88-nuclearfactor (NF)-κB signaling pathway (Diaz 

et al., 2018; Jin et al., 2019). Lipoteichoic acid (LTA), 

exopolysaccharides, and cell surface proteins from Lactic 

acid bacteria also act as antioxidants. Mannan from yeast 

cell walls stimulates immunocytes to produce 

immunoglobulins and cytokines. Postbiotics have been 

explored for human health effects beyond the gut 

including skin, oral cavity, and vagina besides being 

implicated in commercial products for human health. 

Being non-proliferative, these have to be supplied 

regularly and in appropriate dosage to induce positive 

effects on the host for successful therapeutics. Postbiotics 

thus serve as promising tools for the management of 

metabolic disorders, GI tract diseases, mental disorders, 

respiratory problems, cancer, etc. These tend to safeguard 

against bone loss with reduced insulinemia, total plasma 

cholesterol, reduced hyperuricemia, reduced obesity, and 

T2DM (Tang and Li, 2021). Also, postbiotic intake as L. 

acidophilus and L. paracasei result in lower chances of 

childhood diarrhea, gastroenteritis, otitis media, and 

pharyngitis in children (Humphrey and Williamson, 

2001; Haukioja et al., 2006; Corsello et al., 2017). 
 

Psychobiotics 
 

Psychobiotics refer to microbiota-targeted interventions 

which have the potential to treat psychiatric disorders. 

Probiotics and prebiotics together support optimal mental 

health by influencing microbial profiles to bring about 

overall homeostasis and improve cognitive abilities and 

are considered psychobiotics. A high abundance of 

beneficial bacteria like Bifidobacterium bifidum is 

associated with the intake of vegetables, dietary fibers, 

and milk products with concomitant decreased 

depression scores (Uemura et al., 2019). Dietary fibers 

and fermented foods show anti-inflammatory effects 

(Swann et al., 2020; Dürholz et al., 2020; Wouw et al., 

2020; Marco et al., 2017). An altered gut microbiome is 

considered for the pathogenesis of neuropsychiatric 

diseases. Psychobiotics include probiotics that mediate 

their effect on the human brain through the gut-brain 

axis. Therapeutic potential of psychobiotics in various 

mental health outcomes such as stress, anxiety, autism 

spectrum disorder (ASD), depression, insomnia, anorexia 

nervosa, Parkinson’s disease, diabetic neuropathy, and 

multiple sclerosis (MS), ADHD, SZ and 

neurodegenerative disorders like dementia must be 

promoted and explored further to alleviate the burden of 

mental ailments (Sudo, 2019). 
 

Psychobiotics mediate their action by regulating 

neurotransmitters such as gamma amino butyric acid 

(GABA), serotonin, brain-derived neurotrophic factor 

(BDNF), SCFAs, and enteroendocrine hormones by 

lowering pro-inflammatory cytokines and elevating the 

number of anti-inflammatory cytokines such as IL-10 

(O’Mahony et al., 2015; Cheng et al., 2019; O’Riordan 

et al., 2022; Dinan et al., 2013). The possible underlying 

mechanism includes the controlled release of 

corticosterone and adrenocorticotrophic hormone after 

the recolonization of bacteria with synbiotics. 
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Table.1 Effects of antibiotics on colonization of human gut microbiota. 
 

Antibiotic Class Examples Increasing colonization 

rates 

Decreasing colonization 

rates 

Reference 

Penicillin Pen V 

Amoxicillin 

Ampicillin 

Oxacillin 

Amox + clavulanate 

Enterobacteria 

Bacteroidaceae 

Bifidobacteria 

Lactobacilli 

Eubacteria 

Lachnospiraceae 

Les Dethlefsen 

et al., 2008  

Cephalosporins Cefalor 

Cefotaxime 

Ceftizidine 

Cefuroxime 

Cefepime 

Clostridia 

Bacteroides sp. 

E. coli 

Bifidobacteria 

Enterobacteriaceae 

Les Dethlefsen 

et al., 2008  

Macrolides Azithromycin 

Clarithromycin 

Erythromycin 

Spiramycin 

Bacteroidetes 

Proteobacteria 

Resistant Enterobacteria 

Streptococci 

Enterococci 

Actinobacteria 

Lachnospiraceae 

Veillonella 

Clostriales 

Les Dethlefsen 

et al., 2008  

Quinolone 

Fluoroquinolone 

Ciprofloxacin 

Norfloxacin 

Resistant E.coli Lachnospiraceae 

Coprococcus 

Enterobacteriaceae 

Les Dethlefsen 

et al., 2008  

Carbapenems Carbapenems 

Meropenems 

Ertapenem 

Enterococci Eubacteria 

Lactobacillus 

Bacteroides 

Bifidobacteria 

Streptococci 

Clostridia 

Enterobacteria 

Jernberg et al., 

2007  

Lincomycin Clindamycin Enterobacteriaceae Blautia, 

Bacteroides 

Jernberg et al., 

2007  

 

Table.2 Bacteriocins source and target bacteria. 
 

Name of the Bacteriocin  Source Target References (from 

Emma Scott) 

Curvacin A and Sakacin 1 Latilactobacillus sakei subsp. sakei Listeria monocytogenes Camargo et al., 

2018 

Plantaricin L-1 Lactiplantibacillus plantarum subsp. 

plantarum 

Listeria monocytogenes Zhou, 2007 

Plantaricin MG Lactiplantibacillus plantarum subsp. 

plantarum 

Listeria monocytogenes,Salmonella 

typhimurium 

Gong, 2010 

BM1157 Companilactobacillus crustorum Listeria monocytogenes Camargo et al., 

2018 

Gassericin A 

Gassericin T 

Lactobacillus gasseri Listeria monocytogenes, 

Bacillus cereus,Staphylococcus 

aureus 

Pandey, 2013 

Antilisterial ABP-118  Ligilactobacillus salivarius Listeria monocytogenes, 

Enterococcus,Bacillus, Listeria, 

Staphylococcus,Salmonella species 

Gálvez, 2007; 

Patel, 2015 

 

 



Int.J.Curr.Microbiol.App.Sci (2025) 14(01): 72-107 

85 

 

Table.3 Correlation between common metabolic diseases (CMDs) and human phagosomes. 
 

Diseases (CMDs) Effect of phages Reference 

Metabolic Syndrome ↓ Phagosome diversity & richness 

↓ Clostridiaceae phages 

↓ Bifidobacteriaceae phages 

↓ Ruminococcaceae phages 

↑ CrAssphages 

↑ Bacteriophage phages 

Ma et al., 2018; Borin et al., 2023; 

Rasmussen et al., 2020 

Type 2 Diabetes ↑ Gram-negative phages 

↑ Enterobacteriaceae phages 

↑ Klebsiella phages 

↑ Shigella phages 

Han et al., 2018; Sandoval-Vargas et 

al., 2021; Chen et al., 2020; Ma et 

al., 2018; Han et al., 2018;  

Atherosclerotic 

Cardiovascular 

Disease 

↑ Enterobacteriaceae phages 

↑ Streptococcus phages 

Valles-Colomer et al., 2023; Jie et 

al., 2017 

Pre-Hypertension No change in diversity 

↑ Enterobacterial phage (mEp390) 

↑ Pseudomonas phage (phi2) 

↑ Cronobacter phages 

↑ Salmonella phages 

↑ Serratia phage (phiMAM1) 

Yan et al., 2017 

Hypertension No change in diversity 

↑ phage 86 

↑ Cyanophage (S-T1M5) 

↑ Klebsiella phage (KP32) 

↑ Salmonella phage (FSL-SP-004) 

Han et al., 2018 

Non-alcoholic fatty 

liver disease  

↑ Streptococcus phages 

↑ Leuconostoc phages 

↑Escherichia and Enterobacteria 

phages 

↑ Blood glucose levels 

↓ Lactococcus phages 

↓ BMI, HbA1C levels 

Lang et al., 2020; Mao et al., 2023; 

Caussy et al., 2019  
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Table.4 Gut dysbiosis and altered gut metabolite levels in GI Symptoms (Krishnamurthy et al., 2023). 
 

GI Symptom Gut Microbiota Gut Metabolite Altered 

levels 

Flatulence Bacteria Klebsiella, Pneumonia, Proteus, E.coli, Clostridium, 

Actinobacteria, Phascolactobacterium, Bacteroides, 

Coprococcus, Blautia, Bifidobacteriales, Oscillospira, 

Ruminococcaceae, bacteriodales, Clostridales  

↑H2, CO2, H2S, CH4 ↑ 

Hydrogen & Carbon 

Dioxide-Producing 

Bacteria 

Bacteroidetes, Firmicutes ↑H2, CO2, H2S, CH4 ↑ 

Sulfate-Reducing 

Bacteria 

Desulfovibrio Sp ↑H2, CO2, H2S, CH4 ↑ 

Methane –Producing 

Archaea 

M. Smithii, M stadtmanae ↑H2, CO2, H2S, CH4 ↑ 

Constipation Bacteria Coprococcus, Ruminococcus, Blautia, Anaerotruncus, 

Bifidobacterium, Lactobacillus 

Bacteroides, Prevotella, Roseburia 

Butyrate, Acetate, 

Propionate, 

Methane ↑ 

↑ 

Diarrhea Bacteria Streptococcus spp, Blautia, Faecalibacterium 

Lachnospiraceae, Ruminococcaceae 

Bacteroides, Lactobacillus, Bifidobacteriaceae 

Butyrate 

Acetate 

Propionate ↓ 

↑ 

 

 

 

↓ 

Diarrhea Fungi C. albicans, C. tropicalis 

C. Krusei, Torulopsis glabrata, Trichosporon spp, 

Geotrichum spp 

Butyrate 

Acetate 

Propionate ↓ 

↑ 

Diarrhea Virus Rotavirus, Adenovirus, Norovirus, Anellovirus 

Calcivirus, Astrovirus, Picobirnavirus, Enterovirus, 

Dependovirus, Sapovirus, Bufavirus, Bocavirus 

Butyrate 

Acetate 

Propionate ↓ 

↑ 

Abdominal Pain Methane–Producing Archaea: M. smithii 

Fungi, Aspergillus spp. 

Methane ↑ 

 

↑ 

↑ 

Bloating Bacteria Proteobacteria, Faecalibacterium 

Actinobacteria, Bacteroides Uniformis 

Bifidobacterium adolescentis 

Methane Producing Archaea: M. smithii 

Methane ↑ 

 

↑ 

↓ 

 

↑ 
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Figure.1 Chronic diseases implicated from gut microbiome. 
 

 
 

Figure.2 Challenges of Microbiome modulation based therapies. 
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Figure.3 Mechanism of action of gut microbiome. 

 

 
 

Figure.4 Microbiome modulation-based therapeutic interventions. 
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Figure.5 Mechanism of action of gut microbiota associated with CVDs. 
 

 
 

Figure.6 Role of bacteriophage in specific gut microbiota-related diseases. 
 

 
 

Increased pro-inflammatory cytokines increase blood-

brain barrier permeability by activating the 

hypothalamus-pituitary axis thereby leading to decreased 

serotonin levels and causing depression which can be 

managed by affecting the hypothalamus pituitary adrenal 

axis and hence reducing the production of inflammatory 

cytokines and enhancing the production of SCFAs, 

proteins, and neurotransmitters (Sudo et al., 2004; 

Dowlati et al., 2010; Barbosa et al., 2020). SCFAs help 

proliferate regulatory T-cells and production of 

cytokines, maturation, and functioning of microglia 

(Cowan and Petri, 2018). GABA and glutamate-
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producing gut bacteria result in neuronal excitability and 

enhance synaptic plasticity for improvising cognition. 

GABA also plays a significant role in preventing 

neurological diseases, type-1 diabetes, cancer, and 

immune disorders (Diez-Gutierrez et al., 2020). SCFAs 

lead to the synthesis of serotonin and the expression of 

tryptophan hydroxylase-1, a precursor for the synthesis 

of serotonin. Gut microbiota also influences the 

expression of BDNF, the lower levels of which are 

correlated with anxiety and depression (Bistoletti et al., 

2019). Psychobiotics also delay the reuptake of 

neurotransmitters from the synaptic cleft, thereby 

increasing their duration and release in the synaptic cleft. 

These also reduce hs-CRP, increase GSH, reduce 

triglycerides, and insulin levels, and increase antioxidant 

capacity (Tamtaji et al., 2019). Increased levels of 

peripheral tumor necrosis factor α (TNF-α) have been 

correlated with enhanced decline in cognition and 

infections in Alzheimer’s disease. Neuro-inflammations 

are also linked with high levels of TNF-α, transforming 

growth factor beta (TGF-β) in cerebrospinal fluid (CSF), 

and increased activation of microglia in dementia 

(Heneka and Kummer, 2014; Marogianni et al., 2020). 

 

Administration of Lactobacillus plantarum has been 

found to prevent gliosis andsubsequently improve 

cognitive behavior in animal models of AD with reduced 

neuro-inflammations (Huang et al., 2021). Probiotics 

containing Bifidobacterium bifidum, Lactobacillus 

acidophilus, L. fermentum, and L. reuteri are found to be 

associated with decreased TNF-α, IL-1, IL-8, and 

increased levels of TGF-β, PPAR-γ gene expression 

which shows anti-inflammatory properties (Borzabadi et 

al., 2018). 

 

Psychobiotics can be obtained from functional foods 

containing those probiotic species that can produce 

GABA and induce the production of neuro-hormones and 

neurotransmitters. Bacillus spp. and Enterobacter 

xiangfangensis are known as GABA-producing bacteria 

(Luang et al., 2020). Acetobacter aceti, Acetobacter sp, 

L. fructivorans, L. fermentum, Leuconostoc spp., 

Enterococcus faecium, L. kefiranofaciens, Candida 

krusei, and Candida format found in Kefir grains have 

potential to improve memory and language functions in 

AZ patients (Ton et al., 2020). Similarly, fermented milk 

contains L. helveticus to improve cognition in aged adults 

(Chung et al., 2014). 

 

GABA-producing L. brevis is known to have 

antidepressant action without side effects (Ko et al., 

2013). Foods prepared after the fermentation of 

Laminiaria japonica and adding L. brevis provide 

protection against dementia (Reid et al., 2018). Similarly, 

anti-stress and anti-fatigue effects of rice bran fermented 

with Saccharomyces cerevisiae are seen (Kim et al., 

2002). Probiotic yogurt containing B. lactis and L. 

acidophilus helps to reduce depression, anxiety, and 

stress (Mohammadi et al., 2016). Bacillus subtilis, 

Lactobacillus spp., L. rhamnosus can produce nitric 

oxide (NO), a neurotransmitter involved in regulating gut 

functions (Gusarov et al., 2013). The peptide hormone 

GLP-1 produced by gut microbiota acts in 

neuroprotection causing proliferation and apoptosis 

ofneural cells, lowering Aβ plaques, improving memory, 

stimulating nerve regeneration, and reserving 

dopaminergic neurons (Kim et al., 2017). Probiotics also 

improve the metabolism of glucose, reduce neuro-

inflammation, and check the progression of AD. 

 

Psychobiotics are therefore safe with a low risk of 

causing an illness. Individuals may show mild symptoms 

of abdominal discomfort with psychobiotic 

supplementation till the prevailing microbiota adjusts. 

Sometimes rashes, itching, and other allergies such as 

endocarditis, bacteremia, and fungenia may occur as a 

response to a few strains of bacteria especially in 

immunocompromised persons but these allergies will go 

away once psychobiotic intake is discontinued 

(Sotoudegan et al., 2019). Psychobiotics have been used 

in dairy, fermented products, and soybean products to be 

included in the diet for significant mental health 

(Barbosa, 2020). 

 

Therefore, psychobiotics show their probiotic potential 

by reducing levels of pro-inflammatory and enhancing 

anti-inflammatory effects shifting the gut microbiome 

composition towards more regulated inflammatory 

pathways involving modulation of the immune system 

through the production of neuroactive compounds and 

influencing gut barrier functions (Mohammadi et al., 

2019). Research on psychobiotics must be carried out 

further to see their effectiveness, dosage, safety, long-

term effects, and possible side effects while ensuring 

high standards for the quality and purity of their products 

so that these form a valuable tool for the treatment of 

neurological problems. 

 

Bacteriophage 
 

These are the viruses that infect bacteria and serve as key 

drivers of the composition and functioning of the 
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bacterial community thus playing a vital role in 

gastrointestinal and cardio-metabolic diseases (CMDs) 

such as IBD, IBS, diabetes type 1 (T1DM), diabetes type 

2 (T2DM) and Clostridium difficile infection (CDI) by 

preventing the formation of biofilms (Liu et al., 2022; 

Norman et al., 2015; de Jonge et al., 2022; Yang et al., 

2021; Zhao et al., 2017). (Fig.6.) Phages are therefore 

considered the most potent therapeutic intervention, these 

biological agents being active for a longer duration than 

antibiotics after administration and having a narrow 

target host range with minimum side effects on humans 

as they replicate within the target bacterium without 

mutilating mammalian cells. These possess a higher 

degree of specificity as selectively target the pathogens 

making their action more effective by producing better, 

specific, and safe bacteriolytic agents as compared to 

antibiotics (Kim et al., 2019). 

 

The role of phages is mediated through phage therapy 

and fecal virome transplantation (FVT). Bacteriophage 

attaches to mucin, checks the attachment of bacteria and 

its colonization to the mucin layer, and prevents the death 

of epithelial cells. The E. coli bacteriophage is known to 

contribute to amyloid secretion which further induces 

islet amyloid polypeptide (IAPP) to cause breakdown of 

beta cells and production of beta antigens that play a 

significant role in type 1 diabetes (T1DM). IAPP also 

acts as an autoantigen to develop either autoimmunity or 

T1DM (Tetz et al., 2019). Besides this, prophages 

produce various neurotoxins and endotoxins for causing 

botulism, cholera, diphtheria, shigellosis, and scarlet 

fever (Waldor and Mekalanos, 1996, Jun et al., 2013; 

Parajuli et al., 2017; Muthuirulandi et al., 2019; 

Sakaguchi, 2005). Phage administration leads to an 

increased abundance of Eubacterium spp and a decrease 

in Clostridium perfringens (Shkoporov and Hill, 2019). 

Phage administration leads to reduced levels of 

Ruminococcus gnavus and C. sporogenes with decreased 

synthesis of tryptamine. Likewise, phage VD13 results in 

a decreased number of E. faecalis and hence decreased 

tyramine and cytolysin production (Dorrestein et al., 

2014; Wahida et al., 2021). Phages alter the bacterial 

function of metabolism and absorption of bile salts from 

the human gut (Hsu et al., 2019). Phages activate B and 

T cells to produce antibodies and cytokines by the gut 

bacteria (Gogokhia et al., 2019). 

 

Phage therapy is successful in urinary tract infection 

(UTI), gastrointestinal diseases and antibiotic-resistant 

infections (Duan et al., 2021). While FVT emerges as a 

therapy for managing obesity and T2DM (Rasmussen et 

al., 2020; Manrique et al., 2021; Borin et al., 2023). FVT 

involves the transfer of viral components from the stools 

of a healthy person to the recipient who has dysbiosis to 

restore its microbiome (Biazzo et al., 2022).  

 

Making the transfer free from unwanted viruses and 

bacteria poses the biggest challenge in phage therapy. 

The potential role of the bacterium Faecalibacterium 

prausnitzii has been indicated in the pathophysiology of 

IBD (Ma et al., 2018). Schizophrenia (SZ) patients 

include Lactobacillus phage phi-adh more predominantly 

(Yolken et al., 2015). A high abundance of Acanthocystis 

turfaea chlorella virus-1 (ATCV-1) is correlated with 

decreased cognitive functioning due to altered gene 

expression (Yolken et al., 2014). Phage therapy is in use 

against E. coli, Streptococcus, and Klebsiella 

pneumoniae infections, and combinations of phages are 

implicated in targeting E. coli for gastrointestinal 

infections (Febvre et al., 2019). Engineered phages are 

delivered to the gut to modify the composition of 

disease-associated bacteria by promoting the growth of 

SCFAs producing bacteria to restore and establish the 

lost dysbiosis. Therefore, phages can be exploited for 

diagnosis and prognosis of CMDs while leaving the 

beneficial bacteria unaltered and also are capable of 

acting synergistically with antibiotics making them more 

effective. Possibilities of FVT-based therapeutic studies 

find extended and promising use in endometriosis 

(Kitaya and Yasuo, 2023), rheumatoid arthritis (Koziel 

and Potempa, 2022), and periodontitis where the vagina 

and oral microbiome are also involved. Therefore, the 

concept of manipulation of the gut microbiome holds the 

potential for management of diseases.  

 

Fecal Microbiota Transplantation (FMT) 
 

Among various interventions to restore the diversity and 

composition of the microbiota, fecal microbiota 

transplantation (FMT) aims at the transfer of fecal 

microbial content from a healthy individual to the 

intestine of a diseased person. FMT has been 

successfully effective in recurrent Clostridium difficile 

infections (CDI). Treatment success of CDI is found to 

rely upon bacteriophage transfer during FMT (Zuo et al., 

2018). This technique is suggested to treat diarrhea in 

HIV patients due to Clostridium difficile infection. 

(Elopre and Rodriguez, 2013). FMT in humans forms the 

basis of treatment of several diseased conditions 

elucidating that gut microbiota could be the cause of 

disease rather than a consequence of it (Smits et al., 

2013; Aroniadis and Brandt, 2013). Safety concerns are 
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important, especially in advanced gastrointestinal tract 

complications that may occur post-FMT (Wortelboer et 

al., 2019; Ooijevaar et al., 2019; DeFilipp and Bloom, 

2019). FMT can be exploited for the management of 

IBD, IBS, and hepatic encephalopathy.  

 

In IBS patients, the SCFA-producing species such as 

Bifidobacterium and Ruminococcus sp are enriched after 

FMT while Akkermansia muciniphila reduces at 12 

months period after FMT (Parada et al., 2019; Cruz et 

al., 2019). FMT infusions from lean donors result in an 

increased population of Eubacterium hallii and 

Roseburia intestinalis with enhanced insulin sensitivity 

(Duncan et al., 2007) as an association is observed 

between Roseburia and glucose homeostasis in addition 

to the cardiometabolic role of FMT.  

 

Antimicrobial drugs fail to provide a long-term solution 

for the management of diseases and chronic conditions. 

The treatment efficiency is increased only through the 

engraftment of beneficial species through FMT (Keshteli 

et al., 2017). It plays a role as a new treatment strategy 

for malignant tumors, metabolic syndromes, nervous 

system diseases, and autoimmune disorders.  

 

A non-invasive method of implementing FMT includes 

the use of FMT-freeze-drying capsules or frozen capsules 

which are replacing the invasive methods where fresh 

fecal matter is administered through the distal part of the 

gut under strictly anaerobic conditions to acquire 

eubiosis of the gut (Nimgampalle and Kuna, 2017; 

Tamtaji et al., 2019). Overall success and therapeutic 

effect of FMT rely upon the match between the donor 

and the recipient. A large number of small molecules 

produced by microorganisms, significant SCFAs such as 

butyrate, production of anti-inflammatory substances 

lead to strengthening the gut barrier functions leading to 

the effective success of FMT microbiota inoculated 

(Zheng et al., 2022). 

 

Therefore gut microbiota is resilient and can be reshaped 

and reconstructed. Microbiome-targeted therapies aim to 

rehabilitate disturbed microbiomes to ensure restoring 

dysbiosis, preventing and curing diseases, and attempting 

to develop precise therapeutics and treatments. Under 

normal physiological conditions, gut microbiota helps in 

the digestion of food, checks the entry of invading 

pathogens, produces a variety of metabolites good for 

human health, and strengthens the immune system. Gut 

microbiota can serve as a key component, the 

composition of which is influenced by dietary 

interventions, starvation or fasting, nutritional 

supplementation, antibiotics, probiotics, prebiotics, 

postbiotics, synbiotics, psychobiotics, bacteriophages, 

and FMT. The introduction of beneficial microbiota 

forms the platform to develop alternate strategies to 

preview and cure several chronic ailments, especially 

autoimmune disorders. 

 

Diseased conditions have been successfully managed and 

cured in different animal models by manipulating gut 

microbiota, still, data from such human interventions is 

less conclusive as the ability of introduced microbes for 

successful colonization in the gut depends upon the 

already prevailing microbiota. So, animal model-based 

clinical trials need to be clinically brought into practice 

to explain the discrepancies between success and failure 

in human trials. Thus, a comprehensive analysis of 

human gut microbiomesbased on their genetics and 

metabolic predispositions needs further exploration of 

how various microbiome modulation-based interventions 

can result in effective prognosis, prevention, and 

treatment to monitor their progress in combating the 

comorbidities and to anticipate future complications. 

 

Future Prospectives 
 

The mechanism of the factors that lead to 

neurodegenerative diseases, immunomodulation and 

certain types of cancers, gastrointestinal inflammations, 

metabolic disorders, cardiovascular, and respiratory 

diseases, and how these are associated with gut 

microbiome profiles needs to be unveiled. Exhaustive 

research is required to create individual microbiota 

profiles and bring them into practice to know the status 

of gut health, and their correlation with diseases and to 

decipher the possibilities of the development of diseases 

and attempting to treat these diseases by manipulating 

gut microbiota towards the homeostasis. Eventually, this 

knowledge must form the platform for improving human 

health by bringing it into clinical practice. Important 

therapeutic strategies for gut modulation included in this 

review are dietary interventions, FMT, phage therapy, 

use of prebiotics, probiotics, postbiotics, synbiotics, and 

psychobiotics. FMT needs to be made more effective by 

working out the effective dosage, its transplantation 

method, and adopting different pre-treatments of frozen 

preparations. Phage therapy though has elucidated work 

on metabolic disorders, further research is required to 

standardize the technique to bring it to medical practice. 

The potential of psychobiotics to interact with gut 

microbiota modulation towards a healthy one needs to be 
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accurately and more precisely uncovered opening the 

avenues of psychobiotics in adjunct therapies for 

improving the quality of life for the entire mankind. 
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