

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 10 Number 06 (2021)

Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2021.1006.011

Effect of Urea $[CO(NH_2)_2]$ on Histopathology of Kidney, Liver, Intestine and Gonads in *Anabas testudineus* (Bloch.)

Deep Gupta* and Arti Kumari

Department of Zoology, C.M.Sc. College, L.N.M.U., Darbhanga, India

*Corresponding author

ABSTRACT

Keywords

Anabas testudineus, fertilizer, histopathology, pollutant, Urea

Article Info

Accepted: 12 May 2021 Available Online: 10 June 2021 The current study includes the histopathological alterations induced by chronic (20 days) exposure of the fish *Anabas testudineus* to a sublethal concentrations (27.5 mg/L) of inorganic fertilizer, Urea [CO(NH₂)₂]. Some vital organs were taken for the study that is kidney, liver, intestine, testis and ovary. The present study showed major histopathological alteration like vacuolar degenerative changes, necrosis etc. found in liver, intestine, testis, ovary and kidney organs dysfunction in response to urea toxicity effect in the fish *A. testudineus*. So, it is suggested that more suitable to culture at water fertilizer, Urea concentration of < 27.5 mg/l for optimum growth performance. The information will be major role on different levels of responses of organisms with respect to pollutant stress is a necessary prerequisite for the proper management of fertilizer application in agriculture and aquaculture.

Introduction

Over the years, different types of fertilizers are used to increase crop production. However, these fertilizers have caused both lethal and sub-lethal effects to aquatic life when they dissolved and washed into fresh water ecosystems through rains (Ajima *et al.*, 2015). Urea [CO(NH₂)₂] is one of the widely used fertilizer in India. Due to indiscriminate use in agriculture field these fertilizer is ultimately washed out and is continuously adding to the

water bodies affecting the aquatic flora and fauna life. Urea when mixed with water body, it was found to diminish fish production and also cause mortality (Jhingran, 1982). Inorganic fertilizers including urea present in water bodies stimulate the growth of phytoplankton and weeds, which in turn provide food for the fish. At higher concentrations of these fertilizers, aquatic weeds grow tremendously in water bodies and result in depletion amount of oxygen available in the system. They may also cause mortality

to fishes and other aquatic organisms as well as impairment of the physiological responses of fish (Omoregie *et al.*, 2009).

Histopathological studies on aquatic fauna are a noteworthy and promising field to understand the structural organization that occurs in the organs due to pollutants in the environment. These structural changes vary with the body parts, nature of the pollutant, medium and duration of exposure. Water physio-chemical characteristics also influence histopathological manifestations of toxic effects (Galat *et al.*, 1985).

Anabas testudineus (Bloch.), locally known as "kawai", which is an integral part of paddy field culture on this subcontinent, is also subjected to severe ammonia toxicity from ammonium fertilizers during the intensive fertilization of the crop fields.

Hence, in this paper efforts have been made to illustrate the histopathological alterations induced by this inorganic fertilizer, urea on the liver, kidney, intestine and gonads toxicity impact on air breathing teleost, *Anabas testudineus*.

Materials and Methods

The air-breathing teleost Anabas testudineus (Bloch.) procured and brought in container live from the local fish market, Darbhanga were washed with 0.1% KMnO₄ solution to remove dermal infection if any. Healthy fish of average length (10-12 cm) and weight (30-34 g) were acclimated for 15 days to Commercial laboratory conditions. containing 28.58% crude protein was used through the experiment period with daily ration rate 3% of fish weight in the in morning (10.00 AM). Running tap water was used in all the experiments and the fish were adjusted natural photoperiod and ambient temperature. No aeration was done and

follows the methods of APHA (1985). Static acute bioassays were performed to determine LC₅₀ values of urea, the mortality was recorded after 24, 48, 72 and 96 hr, and were calculated by the Finney method (1978). The LC₅₀ values for these periods were 209 mg, 221 mg, 240 mg and 275 mg respectively. 1/10th value of the LC₅₀ value for 96 hr was taken as the sublethal concentration (Sprague, 1971). Twenty acclimated fish were exposed to a sub-lethal concentration (27.5 mg) of urea for 20 days. Side by side same number of fish as that of experimental one was maintained as the control groups. At the end of exposure period the fish were anaesthetized with 1:4000 MS 222 (tricane, methane, sulfonate, sandoz) for two minutes. On 20th day fish were taken out, sacrificed and the liver, intestine, kidney, testis and ovary were excised out and fixed in 10% Neutral Buffered Formalin for 18-24 hours fixed tissue samples were then processed and paraffin embedded tissue blocks were cut into serial sections (5-7 µ thick) by a rotary microtome and all the tissues was prepared using the standard histological methods (Luna, 1968), stained Haematoxylin with and Eosin and microphotographs were taken.

Results and Discussion

Histopathology

Tissue samples liver, kidney, intestine, testes and ovary of *A. testudineus* were treated with sublethal urea concentration 27.5 mg/l at 20 day after sacrificed and processed by conventional method, sectioned at 5-7 μm and stained with Haematoxylin and Eosin (Luna 1968) and microphotographs were taken showed following major significant results:-

Liver

Histology of control fish groups were in normal structure. The liver is composed of

hepatic lobule in which the central vein obscure. The parenchyma of the hepatic lobule is formed from hepatocytes which are arranged around the blood sinusoid in cordlike structure known as hepatic cell cord. There are bile ductile in between the cord of hepatic cells which are directed toward the periphery of the lobule to open in the bile duct (Figure:-1.A.). Anabas testudineus exposed to sub-lethal concentrations of urea - 27.5 mg/L for 20 days showed varied degree of hepatic cirrhosis as evidenced by vacuolization, space formation and resulting haemorrhage, vacuolar degeneration, necrosis, hyperemia and mononuclear cells filtration in portal regions were observed (Figure:-1.B.).

Kidney

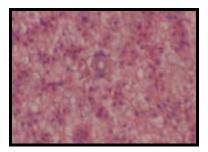
The fish kidney consists of head and body kidneys. The head kidney is the anterior portion of the kidney and consists of lymphoid tissue. The epithelium becomes lower and more cuboidal in the intermediate segment. The distal convoluted tubules have epithelium with lightly eosinophilia and have no brush border (Figure:-2.A.), and kidneys displayed glomerulonephritis, vacuolar degenerative changes in the tubular epithelium and slight congestion (Figure.2B.).

Intestine

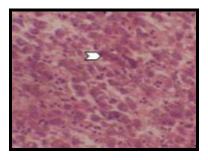
The intestinal wall of control fish, *A. testudineus* comprised of four distinct layers, viz. mucosa, submucosa, muscularis and serosa. The mucosal layer being thrown into finger like villi, which is made up of simple, long columnar cells and numerous goblet cells (mucous cells) with centrally placed nuclei. Sub-mucosa is thin and projected into mucosal folds constituting the lamina propria. This layer is composed of loose connective tissue

with numerous collagen fibres and blood cells. Muscularis consists of inner, thick, circular, and outer, thin, longitudinal muscular layers. Serosa is formed of peritoneal layer and blood capillaries (Figure:-3.A.). In urea exposed, marked histopathological changes in the intestine of *A. testudineus* have been observed in intestinal tissue, hydropic degeneration, necrosis and desquamation in epithelium cells at the apex of the villi were determined and mononuclear cell infiltration in the lamina propria was slightly observed (Figure:-3.B.).

Testes


Histology of normal testes shows the presence of healthy seminiferous tubules, which is internally lined by tubular epithelium which gives rise to spermatocytes. Testis of control fish were composed of lobules showing active spermat ogenesis. Sperm nests were found in majority of lobules (Figure.4A).

Fish exposed to sub-lethal concentrations of urea- 27.5 mg/L for 20 showed considerable degree of alteration in the histology of testes. In testes the seminiferous tubules are normally of varying shapes and sizes, each tubule has a definite thin fibrous wall which is not distinguished after spawning. It shows reduction in the number and condensation of spermatogonic cells as well as inflammation of cells, contraction and vacuolation of tubules (Figure:-4.B.).


Ovaries

Histology of control fish have thick ovarian wall with increased vascular supply and conspicuous blood capillaries. The connective tissue in the stromal was evident in good volume. The germ cells become associated with small epithelial cells more into cortex.


Fig.1A Photomicrograph of the normal liver of control fish, Anabas testudineus. H. & E., 100X.

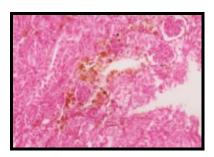
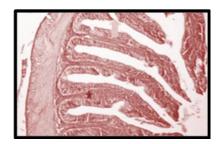
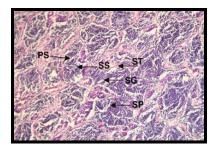
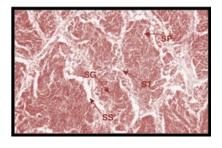
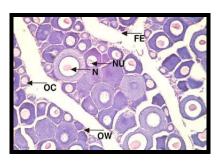

Fig.1B Photomicrograph of the liver of *Anabas testudineus* treated with urea- 27.5 mg/L for 20 days showing hemorrhagic liver tissue (_), blood congestion and necrotic cells. H. & E., 100X.

Fig.2A Photomicrograph of kidney of *Anabas testudineus* from control group showing normal. H.&E., 200X.


Fig.2B Photomicrograph of kidney of *A. testudineus* treated with urea 27.5 mg/l for 20 days showing degeneration of renal tubular epithelium, vacuolation and necrosis of renal tubules along with infiltration and necrosis of melanomacrophage center (arrow). H.&E., 20X.


Fig.3A Photomicrograph of Intestine tissue of *A. testudineus* in control groupshowing normal appearance of circular muscles, longitudinal muscles, serosa and villi. H.&E., 120X.


Fig.3B Photomicrograph of Intestine tissue of *A. testudineus* exposed to urea 27.5 mg/L for 20 days showing desquamation (orange arrow) and mononuclear cell infiltration (MHI) (arrow). H.&E. 120X.


Fig.4A Photomicrograph of the testes of *Anabas testudineus* control fish showing sperm (SP), spermatogonia (SG), spermitide (ST), secondary spermatocyte (SS), primary spermocytes (PS). H.& E., 200X.

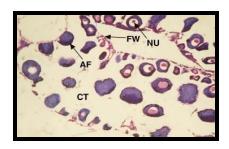

Fig.4B Photomicrograph of the testes of *Anabas testudineus* treated with urea 27.5 mg/L for 20 days showing sperm (SP), spermatogonia condensation (SG), spermitide (ST), secondary spermatocyte vacuolation (SS). H.&E., 200x.

Fig.5A Photomicrograph of the ovary of *Anabas testudineus* control fish showing (OW) Ovarian wall, (FE) Follicular epithelium, (N) Nucleus, (NU) Nucleolus, (OC) Oocyte. H.&E., 200X.

Fig.5B Photomicrograph of the ovary of *Anabas testudineus* treated with urea 27.5 mg/L for 20 days showing (NU) Nucleolus condensed, (CT) Connective tissue degenerate (AF) Atretic follicle & (FW) Follicular wall disrupted. H.& E., 200X.

The associated epithelial cells multiply and surround the germ cell which is now called oocyte developing into the stage I, stage II, stage III etc. and they will develop into the mature ovum which is nourished by the surrounding follicular cell (Figure:-5.A.). The present investigation was undertaken to study the histopathological changes occurring in the ovary of Anabas testiduneus after exposure to sublethal dose of urea- 27.5 mg/L. Follicular cells disrupted. Nucleolus condensation of crescent shaped dark granules at one side. Degeneration of epithelial cells causes vacuolation, breakdown of germinal vesical, many disrupted oogonia are the changes caused due to the exposure of ovary of A. testudineus to sublethal dose of urea showing in Figure.5B.

The results were observed shows similarity of earlier workers, here we discussed. The tissue samples liver, kidney, intestine, testes and ovary of air breathing fish *Anabas testudineus*

were treated with sublethal urea concentration 27.5 mg/l at 20 day after sacrificed. The liver of A. testudineus in the present study showed group exposed to the urea showed hyperplastic hepatic and necrosis of hepatic cells. Similar observations were made in findings by Kalaiyarasi, (2017). Liver is the major metabolic center and any damage to this organ would subsequently do, so many physiological disturbances leading to subsequent mortality of fish (Mishra & Poddar (2016). The Necrosis in the liver could be due to the extra work load on hepatocyte during detoxification of the cypermethrin (Ullah, et al., 2015). Significant changes such as hyperplasia, disintegration of hepatic mass, and focal coagulative necrosis were found in Labeo rohita exposed to cypermethrin (Jee et al., 2005). Tilak et al., (2005) observed the similar changes in liver of Catla cat/a. Osman et al., (2009) recorded congestion and hemorrhage in the hepatic sinusoids with dilation of hepatic vessels, vacuolization and degeneration of hepatic cells, due to heavy metal salts exposure. The liver of Clarias gariepinus cypermethrin exposed the showed to hyperplastic hepatic and necrosis of hepatic cells (Andem et al., 2016), also same effects observed in application of ammonium chloride on fish Clarias batrachus by Sangeeta, et al., (2020). Ammonium chloride release ammonia which can be carried by the hepatic portal vein to the liver as a nutrient and enter liver metabolic pathways (Kucuk, 1999). The above studies support the present experiment with urea.

In our study, kidney tissues displayed glomerulonephritis and hyperemia after being exposed to different concentrations sublethal ammonium chloride concentrations where the kidney is a one of the major organs of the toxic effects. Thurston et al., (1978) observed hydropic degeneration in the kidney of trout after exposure to 0.34 mg/1 NH₃-N. Intracellular vacuolation. necrosis shrinkage of nuclei were also apparent in the present study in di-ammonium phosphate treated Anabas testudineus. Nayan (2012) reported that degeneration of renal tubule epithelia, hyaline droplet degeneration, eventually may induce renal failure. Tilak, et al., (2001)also reported same in Ctenopharyngodon The idellus. above reporting is similar to the present observation.

The intestine is the most important organs in digestion and absorption of nutrients from food, and therefore, monitoring of these organs is considered necessary (Takashima, et al., 1982). Histological analysis of the digestive system is considered a good indicator of the nutritional status and toxicant ingestion of fish (Caballero et al., 2003). All pathological alterations showed relationship with prevalence increasing with increasing di-ammonium phosphate concentration in present work. Desquamation infiltration (MHI) in mononuclear cell

connective tissue was observed in treated fish at 20 days. Similar observations made by earlier workers relating to histopathological changes in intestine in response to various toxicants are being enumerated here.

The proliferation, necrosis of serora and mucosa and rupture of villi have been reported by Sastri and Gupta (1978) in *Channa punctatus*; Kumar and Pant (1984) in *Barbus conchonius*; against exposure to heptachlor, zinc and copper salt mercuric chloride, dimecron, aldicarb and furadan, respectively. The above reporting is similar to the present work.

Degeneration of epithelial cells causes vacuolation, breakdown of germinal vesical, many disrupted oogonia. Maximum damage is produced exposure of urea in the ovaries of testudineus. Almost Anabas similar histological findings were reported by, Saxena Garg, (1978).The histological and abnormalities in ovaries may be caused by several factors viz. ionizing radiations, electric current, parasitic infections, xenobiotic toxicants and by a variety of effluents and aquatic pollutants (Shukla et al., 1984), heavy metal on Cyprinus carpio by Vinodhini et al., (2009); fertilizer, ammonium chloride on fish Clarias batrachus by Sangeeta, et al., (2020). The above reporting is similar to the present findings.

Testicular inflammation was documented as one of the common responses in both aquatic and terrestrial animals exposed to environmental toxicants (Sokal *et al.*,1985), in term of vacuolization of tubular cells and distortion of seminiferous cells along with inflammatory lesions.

The degenerative changes in seminiferous tubules, enlarged interstitium and hemorrhage in intertubular area in albino rats exposed to pesticides have been reported. Baronia and Sahai (1993).An identical arrest spermatogenesis was also reported by Ahsan and Ahsan, (1974) in cadmium injected C. batrachus. Shyni & Sreedhar (2014) observed chronic effect of urea on testicular structure of the black clam. Zutshi (2005) observed the effect of fenthion the on testes Glassogobius giuris. Lata, et al., (2008) observed reduction in size with spermatids and sperms in degenerating condition, same effects observed in application of ammonium chloride on fish Clarias batrachus by Sangeeta, et al., (2020). The above reporting is similar to the present findings.

It could be concluded that Anabas testudineus with average weight 30.0± 4.0 g, exposed with fertilizer, urea, 27.5 mg/l, at histopathological observation were found the liver showed vacuolar degeneration, necrosis, hyperemia, displayed glomerulonephritis, kidneys vacuolar degenerative changes in the tubular epithelium and slight congestion, intestine showed necrosis and desquamation in epithelium cells at the apex of the villi, sperm showed very significant histopathological changes, condensation of spermatogonic cells as well as inflammation of cells, contraction and vacuolation of tubules and while ovary showed degeneration of epithelial cells causes vacuolation, breakdown of germinal vesical. So, it is suggested that more suitable to culture at water fertilizer, urea concentration of < 27.5 mg/l for optimum growth performance. The information will be major role on different levels of responses of organisms with respect to pollutant stress is a necessary pre-requisite for the proper management of fertilizer application in agriculture and aquaculture.

Acknowledgement

The authors are thankful to the Department of Zoology, C.M.Sc. College, LNM University, Darbhanga, for the provision of laboratory facilities used in this study.

References

- Ahsan, S. N. and Ahsan, J. 1974. Degenerative changes in the testis of *Clarias batrachus* (Linn) caused by cadmium chloride. Indian J. Zool., 15: 39-43.
- Ajima, M. N. O., Ogo, O. A., Akpa, L. E. and Ajaero, I., 2015. Biochemical and haematological responses in African catfish *Clarias gariepinus* following chronic exposure to NPK (15:15:15) fertilizer. Afr. J. Aquat. Sci., 40: 73-79.
- APHA, 1985: Standard methods for the examination of water and waste water (16th Ed). American Public Health Assoc., Washington D.C.
- Baronia, A. K. and Sahai, Y. N.1993. DDT induced changes in the testes of albino rat a histopathological study. J. Environ. Bio., 4(2):153.
- Caballero M. J., Izquierdo M. S., Kjørsvik E., Montero D, Socorro J, Fernández A. J. 2003. Morphological aspects of intestinal cells from gilthead seabream (Sparusaurata) fed diets containing different lipid sources. Aquaculture; 225:325-340.
- Finney D. J. 1978. Statistical methods in biological assay. 3rd ed. London UK: Griffin Press; p. 508.
- Galat, D. L., G. Post; T. J. Kerfe and G. R. Boucks, 1985. Histopathological changes in the gill, kidney and liver of Lohonta cut throat trout, *Salmoclarki henshawi*, living in lakes of different salinity alkalinity. J.Fish. Biol. 27, 533-552.
- Jee, L. H.; Masroor, F. & Kang, J. C. 2005. Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish, *Sebastes schlegeli* (Hilgendorf). *Aquaculture Research*, Vol. 36, No. 9, (June 2005), pp. 898– 905, ISSN 1365-2109.

- Jhingran, V. G., 1982. Fish and fisheries of India. Hindustan Publ. New Delhi, pp: 666.
- Kalaiyarasi T, Jayakumar N, Jawahar P, Ahilan B, Subburaj A. Histological changes in the gill and liver of marine spotted catfish, *Arius maculatus* from sewage disposal site, Therespuram of Thoothukudi, Southeast coast of India. Journal of Entomology and Zoology Studies. 2017; 5(5):1710-1715.
- Kucuk, S. 1999. The effect of diel un-ionised ammonia fluctuation on juvenile hybrid striped bass, channel catfish and tilapia. Master thesis. Mississippi State, University, Mississippi, USA.
- Kumar S., & Pant, S. C. 1984. Organal damage by Aldicarb to a freshwater teleost *Barbus conchonius* Hamilton. Bull Environ Contam Toxicol. 33:50-55.
- Lata, S., Sriwastwa, V. M. S., Maurya, J. P. and Chaudhary, S. K. 2008. Urea induced testicular changes in *Mystus vittatus*. J. Eco. Biol., 23:11-17.
- Luna, G. 1968. Manual of histologic staining methods of the Armed Forces Institute of Pathology, 3rd Edition, Mc Grow Hill Book Company, New York.
- Mishra A, Poddar A. 2016. Histopathology of the liver of Indian Murrel *Channa* punctatus (Bloch) exposed to Phenolic Effluents. International Journal of Research in Chemistry and Environment. 6(4):16-21.
- Nayan S R. 2012. Histopathological alterations in the kidney of *Cyprinus carpio* after exposure to Dimethoate (EC 30%). Indian Journal of Scientific Research. 3(1):127-131.
- Omoregie, E., Ajima, M. N. O., Keke, R. I. and Wiêski, K. 2009. Effect of single superphosphate fertilizer on survival and respiratory ynamics of Nile tilapia, *Oreochromis niloticus* (Actinopterygii: Perciformes: Cichlidae). Acta Ichthyol.

- et Pisca., 39: 103-110.
- Osman, M. M., E. L.-Fiky S. A., Soheir Y. M. and A. I. Abeer, 2009. Impact of water pollution on histopathological and eletrophoretic characters of *Auriochromis niloticus* fish. Res.J. Environ. Toxicol. 3(1). 9-23.
- Sangeeta, Anand K, Jha V., 2020. Toxicity of Ammonium chloride on fish behavior and histopathology of air breathing fish *Clarias batrachus* (Linn.). JETIR. India. Vol(7),11.
- Sastri K. V. & Gupta P. K. 1978. Effect of mercuric chloride on the digestive system of *Channa punctatus*: A histopathological study. Environmental Research; 16:270-278.
- Shukla L. A. Srivastva D. Meoxaoi and A. K. Pandey A. K. 1984. Effect of sublethal malathion on ovarian histopathology in *Sarotherodon mossanbicus* Comp. Physiol. Eco. 9. 12.
- Sokal, R. Z., C. E. Madding and R. S. Swerdloff 1985. Lead toxicity and the hypothalamic pituitary testicular axis. Biol. Reprod.,33, 722-728.
- Sprague, J. B., 1971. Measurement of pollution toxicity to fish. III. Sub lethal effects and 'safe' concentration, Water Res.5: 245-266.
- Shyni S D, Sreedhar K S. 2014. Effect of urea, an agrochemical on the histology of black clam, *Villorita cyprinoides*. Fishery Technology. 51:162-166.
- Takashima, F., Hibiya T. 1982. An atlas of fish histology: normal and pathological features. Kodansha, distributed by Fischer, G., Tokyo; 147.
- Thurston, R. V., R. C. Russo, and C. E. Smith. 1978. Acute toxicity of ammonia and nitrite to cutthroat trout fry. Transactions of the American Fisheries Society 107:361–368.
- Tilak K. S., Koteswara Rao and K. Veeraiah, 2005. Effects of chlorpyrifos on

- histopathology of the fish *Catla catla*, 1. *Eeotoxico!*. *Environ. Monit.* 15(2), 127-140
- Tilak K S, Veeraiah K, Yacobu K. 2001.

 Studies on histopathological changes in the gill, liver and kidney of

 Ctenopharyngodon idellus
 (Valenciennes) exposed to technical fenvalerate and EC 20%. Pollution
 Research. 2001; 20:387-393.
- Ullah R., Zuberi A, Naeem M, Ullah S. 2015. Toxicity to Haematology and Morphology of Liver, Brain and Gills during Acute Exposure of Mahseer

- (*Tor putitora*) to Cypermethrin. International Journal of Agricultural Biology. 17: 199–204.
- Vinodhini R, Narayanan M. Heavy metal induced histopathological alterations in the selected organs of *Cyprinus carpio*. International Journal of Environmental Research. 2009; 3(1):95-100.
- Zutshi, B. 2005. Ultrastructural studies on the effect of fenthion on pituitary (GTH cells) and testis of *Glassogobius giuris* (HAM) during breeding phase. J. Environ. Biol., 26 (1), 31-36.

How to cite this article:

Deep Gupta and Arti Kumari. 2021. Effect of Urea [Co(Nh2)2] on Histopathology of Kidney, Liver, Intestine and Gonads in *Anabas testudineus* (Bloch.). *Int.J.Curr.Microbiol.App.Sci.* 10(06): 106-115. doi: https://doi.org/10.20546/ijcmas.2021.1006.011