Molecular Detection of Staphylococcal enterotoxin C (SEC) and Staphylococcal enterotoxin D (SED) from the Cattle Nares in Aizawl, Mizoram (India)

Lalnunfela, J. Lalmuanpuia*, E. Motina, D. Deka and G. J. Lallawmkimi

Department of Veterinary Public Health and Epidemiology, C.V.Sc & A.H., Selesih, Aizawl, Mizoram – 796014, India

*Corresponding author

A B S T R A C T

Staphylococcus aureus is a gram-positive bacteria commonly found on the skin or mucous membranes of both humans and animals. The bacterium is an opportunistic pathogen that can lead to many human and animal diseases that are self-limiting and even life-threatening. Symptoms such as rapid onset of nausea, vomiting, stomach cramps and diarrhoea are part of staphylococcal food poisoning. The bacteria can be killed when heated at a regular cooking temperature, but the toxins remain active. In foodstuffs, staphylococcal enterotoxins are extremely heat tolerant and are known to be more heat resistant than in a laboratory culture medium. Staphylococcal food toxicity is due to the absorption in the food of staphylococcal enterotoxins.

Keywords
Staphylococcal enterotoxins, livestock animals, nasal swabs of goat

Introduction

Staphylococcus aureus is a commensal and significant opportunistic pathogen that causes a wide range of diseases in humans and animals, with a high effect on public health and the livestock sector (Rahimi et al., 2015). S. aureus develops a large variety of staphylococcal enterotoxins with demonstrated emetic activities (SEs, SEA to SEE, SEG to SEL, SER to SET) as well as staphylococcal-like (SEL) proteins not emetic in the primate model (SEIL and SEIQ) (Argudin et al., 2010). Staphylococcal enterotoxins (SE) can cause toxin-mediated disease, and those that function as superantigens are implicated in the pathogenesis of allergic diseases (Varshney et al., 2009).

An estimated 0.1 μg of SEs can cause staphylococcal food poisoning in humans (le Loir et al., 2003). S. aureus has been isolated from the nasal cavities of livestock animals
and hence may be one of the important sources of contamination which may lead to staphylococcal food poisoning (Mourabit et al., 2020).

Materials and Methods

A total of 160 nasal swab samples of cattle were collected from different places of Aizawl, Mizoram, India.

All the swabs were processed for isolation and identification of *S. aureus* (Ewing, 1986). All the isolates were assessed by polymerase chain reaction (PCR) assay for the presence species specific gene (*nuc* gene) (Brakstad et al., 1992).

Those isolates positive for *nuc* gene were further assessed by PCR assay for the presence of classical SE gene(s) (*sea, seb, sec, sed*) (Cremonesi et al., 2005; Johnson et al., 1991) All the isolates were subjected to antimicrobial sensitivity assay by disc diffusion method using 13 commonly used antimicrobial agents (Bauer et al., 1966).

Results and Discussion

A total of 13 out of 160 (8.12%) samples from were found to be positive *nuc* gene which was used for PCR for identification of *S. aureus* (Reddy et al., 2015). All the 13 *nuc* gene positive isolates were screened for the presence of virulence genes (*sec* and *sed*). A total of 1 isolate (6.66%) for *sec* and 2 isolates (13.36%) for *sed* were found to be positive respectively.

From the nasal swabs of goat, 6 (18.75%) isolates were positive for *sec* gene (Zhou et al., 2017). In the food surveillance of South west China, 145 (57.77%) and 43 (17.28%) isolates were positive for *sed* and *sec* genes (Liao et al., 2018). SEC are located in chromosome (Klotz et al., 2003) and commonly isolated from animals (Pinchuk et al., 2010). There are three subtypes of the *sec* gene (*sec1, sec2*, and *sec3*) which are categorised into antigenic properties or diversity in enterotoxin C sequencing (Mousa et al., 2017) and this may be the reason for less detection of *sec* gene in our study.

Table.1 Antibiogram of *sec* and *sed* isolates detected from cattle nares in Aizawl, Mizoram

<table>
<thead>
<tr>
<th>Sl. no</th>
<th>Antimicrobial agents</th>
<th>sec (n=1)</th>
<th></th>
<th>sed (n=2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resistance (%)</td>
<td>Sensitive (%)</td>
<td>Resistance (%)</td>
<td>Sensitive (%)</td>
</tr>
<tr>
<td>1</td>
<td>Oxacillin (OC)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Ampicillin (AMP)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Cefoxitin (CX)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Chloramphenicol (C)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Gentamicin (GEN)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>Ciprofloxacin (CIP)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>7</td>
<td>Tetracycline (TE)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Erythromycin (E)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Ceftriazone (CTX)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>Amikacin (AK)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>11</td>
<td>Kanamycin (K)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>12</td>
<td>Amoxyclov (AMC)</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>13</td>
<td>Azithromycin (AZM)</td>
<td>100%</td>
<td>-</td>
<td>100%</td>
<td>-</td>
</tr>
</tbody>
</table>
Staphylococcal enterotoxins D on the other hand are carried by plasmid (Klotz et al., 2003) and they are frequently detected in *S. aureus* strains associated with intoxications (Shito et al., 2015). It is the second most enterotoxins associated with staphylococcal food poisoning (SFD) after SEA which was in accordance with other workers (Fisher et al., 2018; Argudin et al., 2010). To the best of our knowledge this may be the first report on detection of sec and sed genes from cattle nares in India. All the sec and sed genes isolates showed (Table 1) 100% resistance to ampicillin, tetracycline, erythromycin and azithromycin whereas gentamicin, ciprofloxacin, kanamycin and amoxyclav showed 100% sensitivity. Multiple drug resistance in the isolates may be due to acquired antibiotic resistance such as resistance by mutation, acquisition of resistance genes or it may be due to intrinsic factors like outer membrane permeability, efflux systems etc (Guo et al., 2020). In Mizoram, cattles are regarded as the main source of milk, milk products and meat products and the appearance of *S. aureus* isolates with multi-drug resistance may suggests that they can serve as a significant reservoir that presents a potential public health concern and can complicate possible therapeutic options.

Acknowledgement

The authors are thankful to Dean, College of Veterinary Science and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India for providing necessary funds and facilities to carry out the investigation.

References

Klotz, M., Opper, S., Heeg, K. and Zimmermann, S. 2003. Detection of

How to cite this article: